Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 2012 (vol 65 pp. 222)
Distance Sets of Urysohn Metric Spaces A metric space $\mathrm{M}=(M;\operatorname{d})$ is {\em homogeneous} if for every
isometry $f$ of a finite subspace of $\mathrm{M}$ to a subspace of
$\mathrm{M}$ there exists an isometry of $\mathrm{M}$ onto
$\mathrm{M}$ extending $f$. The space $\mathrm{M}$ is {\em universal}
if it isometrically embeds every finite metric space $\mathrm{F}$ with
$\operatorname{dist}(\mathrm{F})\subseteq \operatorname{dist}(\mathrm{M})$. (With
$\operatorname{dist}(\mathrm{M})$ being the set of distances between points in
$\mathrm{M}$.)
A metric space $\boldsymbol{U}$ is an {\em Urysohn} metric space if
it is homogeneous, universal, separable and complete. (It is not
difficult to deduce
that an Urysohn metric space $\boldsymbol{U}$ isometrically embeds
every separable metric space $\mathrm{M}$ with
$\operatorname{dist}(\mathrm{M})\subseteq \operatorname{dist}(\boldsymbol{U})$.)
The main results are: (1) A characterization of the sets
$\operatorname{dist}(\boldsymbol{U})$ for Urysohn metric spaces $\boldsymbol{U}$.
(2) If $R$ is the distance set of an Urysohn metric space and
$\mathrm{M}$ and $\mathrm{N}$ are two metric spaces, of any
cardinality with distances in $R$, then they amalgamate disjointly to
a metric space with distances in $R$. (3) The completion of every
homogeneous, universal, separable metric space $\mathrm{M}$ is
homogeneous.
Keywords:partitions of metric spaces, Ramsey theory, metric geometry, Urysohn metric space, oscillation stability Categories:03E02, 22F05, 05C55, 05D10, 22A05, 51F99 |
2. CJM 2008 (vol 60 pp. 1108)
A Classification of Tsirelson Type Spaces We give a complete classification of mixed Tsirelson spaces
$T[(\mathcal F_i,\theta_i)_{i=1}^{r}]$ for finitely many pairs of
given compact and hereditary families $\mathcal F_i$ of finite sets of
integers and $0<\theta_i<1$ in terms of the Cantor--Bendixson indices
of the families $\mathcal F_i$, and $\theta_i$ ($1\le i\le r$). We
prove that there are unique countable ordinal $\alpha$ and
$0<\theta<1$ such that every block sequence of
$T[(\mathcal F_i,\theta_i)_{i=1}^{r}]$ has a subsequence equivalent to a
subsequence of the natural basis of the
$T(\mathcal S_{\omega^\alpha},\theta)$. Finally, we give a complete criterion of
comparison in between two of these mixed Tsirelson spaces.
Categories:46B20, 05D10 |