Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 05A16 ( Asymptotic enumeration )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

2. CJM 2006 (vol 58 pp. 1026)

Handelman, David
Karamata Renewed and Local Limit Results
Connections between behaviour of real analytic functions (with no negative Maclaurin series coefficients and radius of convergence one) on the open unit interval, and to a lesser extent on arcs of the unit circle, are explored, beginning with Karamata's approach. We develop conditions under which the asymptotics of the coefficients are related to the values of the function near $1$; specifically, $a(n)\sim f(1-1/n)/ \alpha n$ (for some positive constant $\alpha$), where $f(t)=\sum a(n)t^n$. In particular, if $F=\sum c(n) t^n$ where $c(n) \geq 0$ and $\sum c(n)=1$, then $f$ defined as $(1-F)^{-1}$ (the renewal or Green's function for $F$) satisfies this condition if $F'$ does (and a minor additional condition is satisfied). In come cases, we can show that the absolute sum of the differences of consecutive Maclaurin coefficients converges. We also investigate situations in which less precise asymptotics are available.

Categories:30B10, 30E15, 41A60, 60J35, 05A16

3. CJM 1997 (vol 49 pp. 641)

Burris, Stanley; Compton, Kevin; Odlyzko, Andrew; Richmond, Bruce
Fine spectra and limit laws II First-order 0--1 laws.
Using Feferman-Vaught techniques a condition on the fine spectrum of an admissible class of structures is found which leads to a first-order 0--1 law. The condition presented is best possible in the sense that if it is violated then one can find an admissible class with the same fine spectrum which does not have a first-order 0--1 law. If the condition is satisfied (and hence we have a first-order %% 0--1 law)

Categories:03N45, 11N45, 11N80, 05A15, 05A16, 11M41, 11P81

4. CJM 1997 (vol 49 pp. 468)

Burris, Stanley; Sárközy, András
Fine spectra and limit laws I. First-order laws
Using Feferman-Vaught techniques we show a certain property of the fine spectrum of an admissible class of structures leads to a first-order law. The condition presented is best possible in the sense that if it is violated then one can find an admissible class with the same fine spectrum which does not have a first-order law. We present three conditions for verifying that the above property actually holds. The first condition is that the count function of an admissible class has regular variation with a certain uniformity of convergence. This applies to a wide range of admissible classes, including those satisfying Knopfmacher's Axiom A, and those satisfying Bateman and Diamond's condition. The second condition is similar to the first condition, but designed to handle the discrete case, {\it i.e.}, when the sizes of the structures in an admissible class $K$ are all powers of a single integer. It applies when either the class of indecomposables or the whole class satisfies Knopfmacher's Axiom A$^\#$. The third condition is also for the discrete case, when there is a uniform bound on the number of $K$-indecomposables of any given size.

Keywords:First order limit laws, generalized number theory
Categories:O3C13, 11N45, 11N80, 05A15, 05A16, 11M41, 11P81

© Canadian Mathematical Society, 2014 :