1. CJM Online first
 Fischer, Vera; Mejia, Diego Alejandro

Splitting, Bounding, and Almost Disjointness can be quite Different
We prove the consistency of
$\operatorname{add}(\mathcal{N})\lt \operatorname{v}(\mathcal{N})\lt \mathfrak{p}=\mathfrak{s}=\mathfrak{g}\lt \operatorname{add}(\mathcal{M})=\operatorname{f}(\mathcal{M})\lt \mathfrak{a}=\mathfrak{r}=\operatorname{non}(\mathcal{N})=\mathfrak{c}$
with $\mathrm{ZFC}$, where each of these cardinal invariants assume arbitrary
uncountable regular values.
Keywords:cardinal characteristics of the continuum, splitting, bounding number, maximal almostdisjoint families, template forcing iterations, isomorphismofnames Categories:03E17, 03E35, 03E40 

2. CJM 2013 (vol 66 pp. 303)
 Elekes, Márton; Steprāns, Juris

Haar Null Sets and the Consistent Reflection of Nonmeagreness
A subset $X$ of a Polish group $G$ is called Haar null if there exists
a Borel set $B \supset X$ and Borel probability measure $\mu$ on $G$ such that
$\mu(gBh)=0$ for every $g,h \in G$.
We prove that there exist a set $X \subset \mathbb R$ that is not Lebesgue null and a
Borel probability measure $\mu$ such that $\mu(X + t) = 0$ for every $t \in
\mathbb R$.
This answers a question from David Fremlin's problem list by showing
that one cannot simplify the definition of a Haar null set by leaving out the
Borel set $B$. (The answer was already known assuming the Continuum
Hypothesis.)
This result motivates the following Baire category analogue. It is consistent
with $ZFC$ that there exist an abelian Polish group $G$ and a Cantor
set $C \subset G$ such that for every nonmeagre set $X \subset G$ there exists a $t
\in G$ such that $C \cap (X + t)$ is relatively nonmeagre in $C$. This
essentially generalises results of BartoszyÅski and BurkeMiller.
Keywords:Haar null, Christensen, nonlocally compact Polish group, packing dimension, Problem FC on Fremlin's list, forcing, generic real Categories:28C10, 03E35, 03E17, , , , , 22C05, 28A78 

3. CJM 2012 (vol 64 pp. 1378)
 Raghavan, Dilip; Steprāns, Juris

On Weakly Tight Families
Using ideas from Shelah's recent proof that a completely
separable maximal almost disjoint family exists when
$\mathfrak{c} \lt {\aleph}_{\omega}$, we construct a weakly tight family
under the hypothesis $\mathfrak{s} \leq \mathfrak{b} \lt
{\aleph}_{\omega}$.
The case when $\mathfrak{s} \lt \mathfrak{b}$
is handled in $\mathrm{ZFC}$ and does not require $\mathfrak{b} \lt {\aleph}_{\omega}$,
while an additional PCF type hypothesis, which holds when $\mathfrak{b} \lt
{\aleph}_{\omega}$ is used to treat the case $\mathfrak{s} = \mathfrak{b}$. The notion of
a weakly tight family is a natural weakening of the well studied
notion of a Cohen indestructible maximal almost disjoint family. It
was introduced by HruÅ¡Ã¡k and GarcÃa
Ferreira, who applied it to the KatÃ©tov order on almost
disjoint families.
Keywords:maximal almost disjoint family, cardinal invariants Categories:03E17, 03E15, 03E35, 03E40, 03E05, 03E50, 03E65 

4. CJM 2011 (vol 63 pp. 1416)
 Shelah, Saharon

MAD Saturated Families and SANE Player
We throw some light on the question: is there a MAD family
(a maximal family of infinite subsets of $\mathbb{N}$, the intersection of any
two is finite) that is saturated (completely separable \emph{i.e.,} any
$X \subseteq \mathbb{N}$ is
included in a finite union of members of the family \emph{or} includes a
member (and even continuum many members) of the family).
We prove that it is hard to prove the consistency of the negation:
(i) if $2^{\aleph_0} \lt \aleph_\omega$, then there is such a family;
(ii) if there is no such family, then some situation
related to pcf holds whose consistency is large (and if ${\mathfrak a}_* \gt
\aleph_1$ even unknown);
(iii) if, \emph{e.g.,} there is no inner model with measurables,
\emph{then} there is such a family.
Keywords:set theory, MAD families, pcf, the continuum Categories:03E05, 03E04, 03E17 

5. CJM 2007 (vol 59 pp. 575)
6. CJM 2005 (vol 57 pp. 1139)