Expand all Collapse all | Results 1 - 5 of 5 |
1. CJM 2013 (vol 66 pp. 303)
Haar Null Sets and the Consistent Reflection of Non-meagreness A subset $X$ of a Polish group $G$ is called Haar null if there exists
a Borel set $B \supset X$ and Borel probability measure $\mu$ on $G$ such that
$\mu(gBh)=0$ for every $g,h \in G$.
We prove that there exist a set $X \subset \mathbb R$ that is not Lebesgue null and a
Borel probability measure $\mu$ such that $\mu(X + t) = 0$ for every $t \in
\mathbb R$.
This answers a question from David Fremlin's problem list by showing
that one cannot simplify the definition of a Haar null set by leaving out the
Borel set $B$. (The answer was already known assuming the Continuum
Hypothesis.)
This result motivates the following Baire category analogue. It is consistent
with $ZFC$ that there exist an abelian Polish group $G$ and a Cantor
set $C \subset G$ such that for every non-meagre set $X \subset G$ there exists a $t
\in G$ such that $C \cap (X + t)$ is relatively non-meagre in $C$. This
essentially generalises results of BartoszyÅski and Burke-Miller.
Keywords:Haar null, Christensen, non-locally compact Polish group, packing dimension, Problem FC on Fremlin's list, forcing, generic real Categories:28C10, 03E35, 03E17, , , , , 22C05, 28A78 |
2. CJM 2012 (vol 64 pp. 1378)
On Weakly Tight Families Using ideas from Shelah's recent proof that a completely
separable maximal almost disjoint family exists when
$\mathfrak{c} \lt {\aleph}_{\omega}$, we construct a weakly tight family
under the hypothesis $\mathfrak{s} \leq \mathfrak{b} \lt
{\aleph}_{\omega}$.
The case when $\mathfrak{s} \lt \mathfrak{b}$
is handled in $\mathrm{ZFC}$ and does not require $\mathfrak{b} \lt {\aleph}_{\omega}$,
while an additional PCF type hypothesis, which holds when $\mathfrak{b} \lt
{\aleph}_{\omega}$ is used to treat the case $\mathfrak{s} = \mathfrak{b}$. The notion of
a weakly tight family is a natural weakening of the well studied
notion of a Cohen indestructible maximal almost disjoint family. It
was introduced by HruÅ¡Ã¡k and GarcÃa
Ferreira, who applied it to the KatÃ©tov order on almost
disjoint families.
Keywords:maximal almost disjoint family, cardinal invariants Categories:03E17, 03E15, 03E35, 03E40, 03E05, 03E50, 03E65 |
3. CJM 2011 (vol 63 pp. 1416)
MAD Saturated Families and SANE Player We throw some light on the question: is there a MAD family
(a maximal family of infinite subsets of $\mathbb{N}$, the intersection of any
two is finite) that is saturated (completely separable \emph{i.e.,} any
$X \subseteq \mathbb{N}$ is
included in a finite union of members of the family \emph{or} includes a
member (and even continuum many members) of the family).
We prove that it is hard to prove the consistency of the negation:
(i) if $2^{\aleph_0} \lt \aleph_\omega$, then there is such a family;
(ii) if there is no such family, then some situation
related to pcf holds whose consistency is large (and if ${\mathfrak a}_* \gt
\aleph_1$ even unknown);
(iii) if, \emph{e.g.,} there is no inner model with measurables,
\emph{then} there is such a family.
Keywords:set theory, MAD families, pcf, the continuum Categories:03E05, 03E04, 03E17 |
4. CJM 2007 (vol 59 pp. 575)
Cardinal Invariants of Analytic $P$-Ideals We study the cardinal invariants of analytic $P$-ideals, concentrating on the
ideal $\mathcal{Z}$ of asymptotic density zero. Among other results we prove
$ \min\{ \mathfrak{b},\cov\ (\mathcal{N})
\} \leq\cov^{\ast}(\mathcal{Z}) \leq\max\{
\mathfrak{b},\non(\mathcal{N}) \right\}.
$
Categories:03E17, 03E40 |
5. CJM 2005 (vol 57 pp. 1139)
Models in Which Every Nonmeager Set is Nonmeager in a Nowhere Dense Cantor Set We prove that it is relatively consistent with $\ZFC$ that in any
perfect Polish space, for every nonmeager set $A$ there exists a
nowhere dense Cantor set $C$ such that $A\cap C$ is nonmeager in
$C$. We also examine variants of this result and establish a
measure theoretic analog.
Keywords:Property of Baire, Lebesgue measure,, Cantor set, oracle forcing Categories:03E35, 03E17, 03E50 |