Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 03E15 ( Descriptive set theory [See also 28A05, 54H05] )

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM Online first

Martínez-de-la-Vega, Veronica; Mouron, Christopher
Monotone Classes of Dendrites
Continua $X$ and $Y$ are monotone equivalent if there exist monotone onto maps $f:X\longrightarrow Y$ and $g:Y\longrightarrow X$. A continuum $X$ is isolated with respect to monotone maps if every continuum that is monotone equivalent to $X$ must also be homeomorphic to $X$. In this paper we show that a dendrite $X$ is isolated with respect to monotone maps if and only if the set of ramification points of $X$ is finite. In this way we fully characterize the classes of dendrites that are monotone isolated.

Keywords:dendrite, monotone, bqo, antichain
Categories:54F50, 54C10, 06A07, 54F15, 54F65, 03E15

2. CJM 2013 (vol 66 pp. 759)

Hrušák, Michael; van Mill, Jan
Addendum to "Nearly Countable Dense Homogeneous Spaces"
This paper provides an addendum to M. Hrušák and J. van Mill ``Nearly countable dense homogeneous spaces.'' Canad. J. Math., published online 2013-03-08

Keywords:countable dense homogeneous, nearly countable dense homogeneous, Effros Theorem, Vaught's conjecture
Categories:54H05, 03E15, 54E50

3. CJM 2013 (vol 66 pp. 903)

Sargsyan, Grigor; Trang, Nam
Non-tame Mice from Tame Failures of the Unique Branch Hypothesis
In this paper, we show that the failure of the unique branch hypothesis (UBH) for tame trees implies that in some homogenous generic extension of $V$ there is a transitive model $M$ containing $Ord \cup \mathbb{R}$ such that $M\vDash \mathsf{AD}^+ + \Theta \gt \theta_0$. In particular, this implies the existence (in $V$) of a non-tame mouse. The results of this paper significantly extend J. R. Steel's earlier results for tame trees.

Keywords:mouse, inner model theory, descriptive set theory, hod mouse, core model induction, UBH
Categories:03E15, 03E45, 03E60

4. CJM 2013 (vol 66 pp. 743)

Hrušák, Michael; van Mill, Jan
Nearly Countable Dense Homogeneous Spaces
We study separable metric spaces with few types of countable dense sets. We present a structure theorem for locally compact spaces having precisely $n$ types of countable dense sets: such a space contains a subset $S$ of size at most $n{-}1$ such that $S$ is invariant under all homeomorphisms of $X$ and $X\setminus S$ is countable dense homogeneous. We prove that every Borel space having fewer than $\mathfrak{c}$ types of countable dense sets is Polish. The natural question of whether every Polish space has either countably many or $\mathfrak{c}$ many types of countable dense sets, is shown to be closely related to Topological Vaught's Conjecture.

Keywords:countable dense homogeneous, nearly countable dense homogeneous, Effros Theorem, Vaught's conjecture
Categories:54H05, 03E15, 54E50

5. CJM 2012 (vol 64 pp. 1378)

Raghavan, Dilip; Steprāns, Juris
On Weakly Tight Families
Using ideas from Shelah's recent proof that a completely separable maximal almost disjoint family exists when $\mathfrak{c} \lt {\aleph}_{\omega}$, we construct a weakly tight family under the hypothesis $\mathfrak{s} \leq \mathfrak{b} \lt {\aleph}_{\omega}$. The case when $\mathfrak{s} \lt \mathfrak{b}$ is handled in $\mathrm{ZFC}$ and does not require $\mathfrak{b} \lt {\aleph}_{\omega}$, while an additional PCF type hypothesis, which holds when $\mathfrak{b} \lt {\aleph}_{\omega}$ is used to treat the case $\mathfrak{s} = \mathfrak{b}$. The notion of a weakly tight family is a natural weakening of the well studied notion of a Cohen indestructible maximal almost disjoint family. It was introduced by Hrušák and García Ferreira, who applied it to the Katétov order on almost disjoint families.

Keywords:maximal almost disjoint family, cardinal invariants
Categories:03E17, 03E15, 03E35, 03E40, 03E05, 03E50, 03E65

6. CJM 1999 (vol 51 pp. 309)

Leung, Denny H.; Tang, Wee-Kee
Symmetric sequence subspaces of $C(\alpha)$, II
If $\alpha$ is an ordinal, then the space of all ordinals less than or equal to $\alpha$ is a compact Hausdorff space when endowed with the order topology. Let $C(\alpha)$ be the space of all continuous real-valued functions defined on the ordinal interval $[0, \alpha]$. We characterize the symmetric sequence spaces which embed into $C(\alpha)$ for some countable ordinal $\alpha$. A hierarchy $(E_\alpha)$ of symmetric sequence spaces is constructed so that, for each countable ordinal $\alpha$, $E_\alpha$ embeds into $C(\omega^{\omega^\alpha})$, but does not embed into $C(\omega^{\omega^\beta})$ for any $\beta < \alpha$.

Categories:03E13, 03E15, 46B03, 46B45, 46E15, 54G12

© Canadian Mathematical Society, 2015 :