location:  Publications → journals
Search results

Search: All articles in the CJM digital archive with keyword zeros

 Expand all        Collapse all Results 1 - 7 of 7

1. CJM 2014 (vol 67 pp. 507)

Borwein, Peter; Choi, Stephen; Ferguson, Ron; Jankauskas, Jonas
 On Littlewood Polynomials with Prescribed Number of Zeros Inside the Unit Disk We investigate the numbers of complex zeros of Littlewood polynomials $p(z)$ (polynomials with coefficients $\{-1, 1\}$) inside or on the unit circle $|z|=1$, denoted by $N(p)$ and $U(p)$, respectively. Two types of Littlewood polynomials are considered: Littlewood polynomials with one sign change in the sequence of coefficients and Littlewood polynomials with one negative coefficient. We obtain explicit formulas for $N(p)$, $U(p)$ for polynomials $p(z)$ of these types. We show that, if $n+1$ is a prime number, then for each integer $k$, $0 \leq k \leq n-1$, there exists a Littlewood polynomial $p(z)$ of degree $n$ with $N(p)=k$ and $U(p)=0$. Furthermore, we describe some cases when the ratios $N(p)/n$ and $U(p)/n$ have limits as $n \to \infty$ and find the corresponding limit values. Keywords:Littlewood polynomials, zeros, complex rootsCategories:11R06, 11R09, 11C08

2. CJM 2011 (vol 64 pp. 151)

Miller, Steven J.; Wong, Siman
 Moments of the Rank of Elliptic Curves Fix an elliptic curve $E/\mathbb{Q}$ and assume the Riemann Hypothesis for the $L$-function $L(E_D, s)$ for every quadratic twist $E_D$ of $E$ by $D\in\mathbb{Z}$. We combine Weil's explicit formula with techniques of Heath-Brown to derive an asymptotic upper bound for the weighted moments of the analytic rank of $E_D$. We derive from this an upper bound for the density of low-lying zeros of $L(E_D, s)$ that is compatible with the random matrix models of Katz and Sarnak. We also show that for any unbounded increasing function $f$ on $\mathbb{R}$, the analytic rank and (assuming in addition the Birch and Swinnerton-Dyer conjecture) the number of integral points of $E_D$ are less than $f(D)$ for almost all $D$. Keywords:elliptic curve, explicit formula, integral point, low-lying zeros, quadratic twist, rankCategories:11G05, 11G40

3. CJM 2010 (vol 62 pp. 1058)

Chen, Yichao; Liu, Yanpei
 On a Conjecture of S. Stahl S. Stahl conjectured that the zeros of genus polynomials are real. In this note, we disprove this conjecture. Keywords:genus polynomial, zeros, realCategory:05C10

4. CJM 2010 (vol 62 pp. 261)

Chiang, Yik-Man; Ismail, Mourad E. H.
 Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials No abstract. Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine ProblemCategories:34M10, 33C15, 33C47

5. CJM 2008 (vol 60 pp. 958)

Chen, Yichao
 A Note on a Conjecture of S. Stahl S. Stahl (Canad. J. Math. \textbf{49}(1997), no. 3, 617--640) conjectured that the zeros of genus polynomial are real. L. Liu and Y. Wang disproved this conjecture on the basis of Example 6.7. In this note, it is pointed out that there is an error in this example and a new generating matrix and initial vector are provided. Keywords:genus polynomial, zeros, realCategories:05C10, 05A15, 30C15, 26C10

6. CJM 2006 (vol 58 pp. 726)

Chiang, Yik-Man; Ismail, Mourad E. H.
 On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials We show that the value distribution (complex oscillation) of solutions of certain periodic second order ordinary differential equations studied by Bank, Laine and Langley is closely related to confluent hypergeometric functions, Bessel functions and Bessel polynomials. As a result, we give a complete characterization of the zero-distribution in the sense of Nevanlinna theory of the solutions for two classes of the ODEs. Our approach uses special functions and their asymptotics. New results concerning finiteness of the number of zeros (finite-zeros) problem of Bessel and Coulomb wave functions with respect to the parameters are also obtained as a consequence. We demonstrate that the problem for the remaining class of ODEs not covered by the above special function approach" can be described by a classical Heine problem for differential equations that admit polynomial solutions. Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine ProbleCategories:34M10, 33C15, 33C47

7. CJM 1997 (vol 49 pp. 1034)

Saff, E. B.; Stahl, H.
 Ray sequences of best rational approximants for $|x|^\alpha$ The convergence behavior of best uniform rational approximations $r^\ast_{mn}$ with numerator degree~$m$ and denominator degree~$n$ to the function $|x|^\alpha$, $\alpha>0$, on $[-1,1]$ is investigated. It is assumed that the indices $(m,n)$ progress along a ray sequence in the lower triangle of the Walsh table, {\it i.e.} the sequence of indices $\{ (m,n)\}$ satisfies $${m\over n}\rightarrow c\in [1, \infty)\quad\hbox{as } m+ n\rightarrow\infty.$$ In addition to the convergence behavior, the asymptotic distribution of poles and zeros of the approximants and the distribution of the extreme points of the error function $|x|^\alpha - r^\ast_{mn} (x)$ on $[-1,1]$ will be studied. The results will be compared with those for paradiagonal sequences $(m=n+2[\alpha/2])$ and for sequences of best polynomial approximants. Keywords:Walsh table, rational approximation, best approximation,, distribution of poles and zeros.Categories:41A25, 41A44
 top of page | contact us | privacy | site map |