CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword weighted spaces

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2012 (vol 65 pp. 510)

Blasco de la Cruz, Oscar; Villarroya Alvarez, Paco
Transference of vector-valued multipliers on weighted $L^p$-spaces
We prove restriction and extension of multipliers between weighted Lebesgue spaces with two different weights, which belong to a class more general than periodic weights, and two different exponents of integrability which can be below one. We also develop some ad-hoc methods which apply to weights defined by the product of periodic weights with functions of power type. Our vector-valued approach allow us to extend results to transference of maximal multipliers and provide transference of Littlewood-Paley inequalities.

Keywords:Fourier multipliers, restriction theorems, weighted spaces
Categories:42B15, 42B35

2. CJM 2005 (vol 57 pp. 897)

Berezhnoĭ, Evgenii I.; Maligranda, Lech
Representation of Banach Ideal Spaces and Factorization of Operators
Representation theorems are proved for Banach ideal spaces with the Fatou property which are built by the Calder{\'o}n--Lozanovski\u\i\ construction. Factorization theorems for operators in spaces more general than the Lebesgue $L^{p}$ spaces are investigated. It is natural to extend the Gagliardo theorem on the Schur test and the Rubio de~Francia theorem on factorization of the Muckenhoupt $A_{p}$ weights to reflexive Orlicz spaces. However, it turns out that for the scales far from $L^{p}$-spaces this is impossible. For the concrete integral operators it is shown that factorization theorems and the Schur test in some reflexive Orlicz spaces are not valid. Representation theorems for the Calder{\'o}n--Lozanovski\u\i\ construction are involved in the proofs.

Keywords:Banach ideal spaces, weighted spaces, weight functions,, Calderón--Lozanovski\u\i\ spaces, Orlicz spaces, representation of, spaces, uniqueness problem, positive linear operators, positive sublinear, operators, Schur test, factorization of operators, f
Categories:46E30, 46B42, 46B70

3. CJM 1999 (vol 51 pp. 546)

Felten, M.
Strong Converse Inequalities for Averages in Weighted $L^p$ Spaces on $[-1,1]$
Averages in weighted spaces $L^p_\phi[-1,1]$ defined by additions on $[-1,1]$ will be shown to satisfy strong converse inequalities of type A and B with appropriate $K$-functionals. Results for higher levels of smoothness are achieved by combinations of averages. This yields, in particular, strong converse inequalities of type D between $K$-functionals and suitable difference operators.

Keywords:averages, $K$-functionals, weighted spaces, strong converse inequalities
Categories:41A25, 41A63

© Canadian Mathematical Society, 2014 : https://cms.math.ca/