1. CJM 2012 (vol 66 pp. 700)
 He, Jianxun; Xiao, Jinsen

Inversion of the Radon Transform on the Free Nilpotent Lie Group of Step Two
Let $F_{2n,2}$ be the free nilpotent Lie group of step two on $2n$
generators, and let $\mathbf P$ denote the affine automorphism group
of $F_{2n,2}$. In this article the theory of continuous wavelet
transform on $F_{2n,2}$ associated with $\mathbf P$ is developed,
and then a type of radial wavelets is constructed. Secondly, the
Radon transform on $F_{2n,2}$ is studied and two equivalent
characterizations of the range for Radon transform are given.
Several kinds of inversion Radon transform formulae
are established. One is obtained from the Euclidean Fourier transform, the others are from group Fourier transform. By using wavelet transform we deduce an inversion formula of the Radon
transform, which
does not require the smoothness of
functions if the wavelet satisfies the differentiability property.
Specially, if $n=1$, $F_{2,2}$ is the $3$dimensional Heisenberg group $H^1$, the
inversion formula of the Radon transform is valid which is
associated with the subLaplacian on $F_{2,2}$. This result cannot
be extended to the case $n\geq 2$.
Keywords:Radon transform, wavelet transform, free nilpotent Lie group, unitary representation, inversion formula, subLaplacian Categories:43A85, 44A12, 52A38 

2. CJM 2011 (vol 63 pp. 689)
 Olphert, Sean; Power, Stephen C.

Higher Rank Wavelets
A theory of higher rank multiresolution analysis is given in the
setting of abelian multiscalings. This theory enables the
construction, from a higher rank MRA, of finite wavelet sets
whose multidilations have translates forming an orthonormal basis
in $L^2(\mathbb R^d)$. While tensor products of uniscaled MRAs provide
simple examples we construct many nonseparable higher rank
wavelets. In particular we construct \emph{Latin square
wavelets} as rank~$2$ variants of Haar wavelets. Also we construct
nonseparable scaling functions for rank $2$ variants of Meyer
wavelet scaling functions, and we construct the associated
nonseparable wavelets with compactly supported Fourier transforms.
On the other hand we show that compactly supported scaling
functions for biscaled MRAs are necessarily separable.
Keywords: wavelet, multiscaling, higher rank, multiresolution, Latin squares Categories:42C40, 42A65, 42A16, 43A65 

3. CJM 2010 (vol 62 pp. 1182)
 Yue, Hong

A Fractal Function Related to the JohnNirenberg Inequality for $Q_{\alpha}({\mathbb R^n})$
A borderline case function $f$ for $ Q_{\alpha}({\mathbb R^n})$ spaces
is defined as a Haar wavelet decomposition, with the coefficients
depending on a fixed parameter $\beta>0$. On its support $I_0=[0,
1]^n$, $f(x)$ can be expressed by the binary expansions of the
coordinates of $x$. In particular, $f=f_{\beta}\in Q_{\alpha}({\mathbb
R^n})$ if and only if $\alpha<\beta<\frac{n}{2}$, while for
$\beta=\alpha$, it was shown by Yue and Dafni that $f$ satisfies a
JohnNirenberg inequality for $ Q_{\alpha}({\mathbb R^n})$. When
$\beta\neq 1$, $f$ is a selfaffine function. It is continuous almost
everywhere and discontinuous at all dyadic points inside $I_0$. In
addition, it is not monotone along any coordinate direction in any
small cube. When the parameter $\beta\in (0, 1)$, $f$ is onto from
$I_0$ to $[\frac{1}{12^{\beta}}, \frac{1}{12^{\beta}}]$, and the
graph of $f$ has a noninteger fractal dimension $n+1\beta$.
Keywords:Haar wavelets, Q spaces, JohnNirenberg inequality, Greedy expansion, selfaffine, fractal, Box dimension Categories:42B35, 42C10, 30D50, 28A80 

4. CJM 2006 (vol 58 pp. 1121)
 Bownik, Marcin; Speegle, Darrin

The Feichtinger Conjecture for Wavelet Frames, Gabor Frames and Frames of Translates
The Feichtinger conjecture is considered for three special families of
frames. It is shown that if a wavelet frame satisfies a certain weak
regularity condition, then it can be written as the finite union of
Riesz basic sequences each of which is a wavelet system. Moreover, the
above is not true for general wavelet frames. It is also shown that a
supadjoint Gabor frame can be written as the finite union of Riesz
basic sequences. Finally, we show how existing techniques can be
applied to determine whether frames of translates can be written as
the finite union of Riesz basic sequences. We end by giving an example
of a frame of translates such that any Riesz basic subsequence must
consist of highly irregular translates.
Keywords:frame, Riesz basic sequence, wavelet, Gabor system, frame of translates, paving conjecture Categories:42B25, 42B35, 42C40 

5. CJM 2002 (vol 54 pp. 634)
 Weber, Eric

Frames and Single Wavelets for Unitary Groups
We consider a unitary representation of a discrete countable abelian
group on a separable Hilbert space which is associated to a cyclic
generalized frame multiresolution analysis. We extend Robertson's
theorem to apply to frames generated by the action of the group.
Within this setup we use Stone's theorem and the theory of projection
valued measures to analyze wandering frame collections. This yields a
functional analytic method of constructing a wavelet from a
generalized frame multi\resolution analysis in terms of the frame
scaling vectors. We then explicitly apply our results to the action
of the integers given by translations on $L^2({\mathbb R})$.
Keywords:wavelet, multiresolution analysis, unitary group representation, frame Categories:42C40, 43A25, 42C15, 46N99 
