1. CJM Online first
 Ng, P. W.; Skoufranis, P.

Closed convex hulls of unitary orbits in certain simple real rank zero C$^*$algebras
In this paper, we characterize the closures of convex hulls of
unitary orbits of selfadjoint operators in unital, separable,
simple C$^*$algebras with nontrivial tracial simplex, real
rank zero, stable rank one, and strict comparison of projections
with respect to tracial states. In addition, an upper bound
for the number of unitary conjugates in a convex combination
needed to approximate a selfadjoint are obtained.
Keywords:convex hull of unitary orbits, real rank zero C*algebras simple, eigenvalue function, majorization Category:46L05 

2. CJM 2003 (vol 55 pp. 91)
 Choi, ManDuen; Li, ChiKwong; Poon, YiuTung

Some Convexity Features Associated with Unitary Orbits
Let $\mathcal{H}_n$ be the real linear space of $n\times n$ complex
Hermitian matrices. The unitary (similarity) orbit $\mathcal{U}
(C)$ of $C \in \mathcal{H}_n$ is the collection of all matrices
unitarily similar to $C$. We characterize those $C \in \mathcal{H}_n$
such that every matrix in the convex hull of $\mathcal{U}(C)$ can
be written as the average of two matrices in $\mathcal{U}(C)$. The
result is used to study spectral properties of submatrices of
matrices in $\mathcal{U}(C)$, the convexity of images of $\mathcal{U}
(C)$ under linear transformations, and some related questions
concerning the joint $C$numerical range of Hermitian matrices.
Analogous results on real symmetric matrices are also discussed.
Keywords:Hermitian matrix, unitary orbit, eigenvalue, joint numerical range Categories:15A60, 15A42 
