Expand all Collapse all | Results 1 - 21 of 21 |
1. CJM 2013 (vol 66 pp. 1287)
Types et contragrÃ©dientes Soit $\mathrm{G}$ un groupe rÃ©ductif $p$-adique, et soit $\mathrm{R}$
un corps algÃ©briquement clos.
Soit $\pi$ une reprÃ©sentation lisse de $\mathrm{G}$ dans un espace
vectoriel $\mathrm{V}$ sur
$\mathrm{R}$.
Fixons un sous-groupe ouvert et compact $\mathrm{K}$ de $\mathrm{G}$ et une reprÃ©sentation
lisse irrÃ©ductible $\tau$ de $\mathrm{K}$ dans un espace vectoriel
$\mathrm{W}$ de dimension
finie sur $\mathrm{R}$.
Sur l'espace $\mathrm{Hom}_{\mathrm{K}(\mathrm{W},\mathrm{V})}$ agit l'algÃ¨bre
d'entrelacement $\mathscr{H}(\mathrm{G},\mathrm{K},\mathrm{W})$.
Nous examinons la compatibilitÃ© de ces constructions avec le passage aux
reprÃ©sentations contragrÃ©dientes $\mathrm{V}^Äe$ et $\mathrm{W}^Äe$, et donnons en
particulier des conditions sur $\mathrm{W}$ ou sur la caractÃ©ristique
de $\mathrm{R}$ pour que
le comportement soit semblable au cas des reprÃ©sentations complexes.
Nous prenons un point de vue abstrait, n'utilisant que des propriÃ©tÃ©s
gÃ©nÃ©rales de $\mathrm{G}$.
Nous terminons par une application Ã la thÃ©orie des types pour le groupe
$\mathrm{GL}_n$ et ses formes intÃ©rieures sur un corps local non archimÃ©dien.
Keywords:modular representations of p-adic reductive groups, types, contragredient, intertwining Category:22E50 |
2. CJM 2013 (vol 66 pp. 1413)
Generalized KÃ¤hler--Einstein Metrics and Energy Functionals In this paper, we consider a generalized
KÃ¤hler-Einstein equation on KÃ¤hler manifold $M$. Using the
twisted $\mathcal K$-energy introduced by Song and Tian, we show
that the existence of generalized KÃ¤hler-Einstein metrics with
semi-positive twisting $(1, 1)$-form $\theta $ is also closely
related to the properness of the twisted $\mathcal K$-energy
functional. Under the condition that the twisting form $\theta $ is
strictly positive at a point or $M$ admits no nontrivial Hamiltonian
holomorphic vector field, we prove that the existence of generalized
KÃ¤hler-Einstein metric implies a Moser-Trudinger type inequality.
Keywords:complex Monge--AmpÃ¨re equation, energy functional, generalized KÃ¤hler--Einstein metric, Moser--Trudinger type inequality Categories:53C55, 32W20 |
3. CJM 2013 (vol 66 pp. 284)
Random Harmonic Functions in Growth Spaces and Bloch-type Spaces Let $h^\infty_v(\mathbf D)$ and $h^\infty_v(\mathbf B)$ be the spaces
of harmonic functions in the unit disk and multi-dimensional unit
ball
which admit a two-sided radial majorant $v(r)$.
We consider functions $v $ that fulfill a doubling condition. In the
two-dimensional case let $u (re^{i\theta},\xi) = \sum_{j=0}^\infty
(a_{j0} \xi_{j0} r^j \cos j\theta +a_{j1} \xi_{j1} r^j \sin j\theta)$
where $\xi =\{\xi_{ji}\}$ is a sequence of random
subnormal variables and $a_{ji}$ are
real; in higher dimensions we consider series of spherical harmonics.
We will obtain conditions on the coefficients $a_{ji} $ which imply
that $u$ is in $h^\infty_v(\mathbf B)$ almost surely.
Our estimate improves previous results by Bennett, Stegenga and
Timoney, and we prove that the estimate is sharp.
The results for growth spaces can easily be applied to Bloch-type
spaces, and we obtain a similar characterization for these spaces,
which generalizes results by Anderson, Clunie and Pommerenke and by
Guo and Liu.
Keywords:harmonic functions, random series, growth space, Bloch-type space Categories:30B20, 31B05, 30H30, 42B05 |
4. CJM 2012 (vol 66 pp. 170)
Modular Abelian Varieties Over Number Fields The main result of this paper is a characterization of the abelian
varieties $B/K$ defined over Galois number fields with the
property that the $L$-function $L(B/K;s)$ is a product of
$L$-functions of non-CM newforms over $\mathbb Q$ for congruence
subgroups of the form $\Gamma_1(N)$. The characterization involves the
structure of $\operatorname{End}(B)$, isogenies between the Galois conjugates of
$B$, and a Galois cohomology class attached to $B/K$.
We call the varieties having this property strongly modular.
The last section is devoted to the study of a family of abelian surfaces with quaternionic
multiplication.
As an illustration of the ways in which the general results of the paper can be applied
we prove the strong modularity of some particular abelian surfaces belonging to that family, and
we show how to find nontrivial examples of strongly modular varieties by twisting.
Keywords:Modular abelian varieties, $GL_2$-type varieties, modular forms Categories:11G10, 11G18, 11F11 |
5. CJM 2012 (vol 65 pp. 721)
Tameness of Complex Dimension in a Real Analytic Set Given a real analytic set $X$ in a complex manifold and a positive
integer $d$, denote by $\mathcal A^d$ the set of points $p$ in $X$ at which
there exists a germ of a complex analytic set of dimension $d$ contained in $X$.
It is proved that $\mathcal A^d$ is a closed semianalytic subset of $X$.
Keywords:complex dimension, finite type, semianalytic set, tameness Categories:32B10, 32B20, 32C07, 32C25, 32V15, 32V40, 14P15 |
6. CJM 2012 (vol 65 pp. 195)
Surfaces with $p_g=q=2$, $K^2=6$, and Albanese Map of Degree $2$ We classify minimal surfaces of general type with $p_g=q=2$ and
$K^2=6$ whose Albanese map is a generically finite double cover.
We show that the corresponding moduli space is the disjoint union
of three generically smooth irreducible components
$\mathcal{M}_{Ia}$, $\mathcal{M}_{Ib}$, $\mathcal{M}_{II}$ of
dimension $4$, $4$, $3$, respectively.
Keywords:surface of general type, abelian surface, Albanese map Categories:14J29, 14J10 |
7. CJM 2012 (vol 65 pp. 52)
C$^*$-algebras Nearly Contained in Type $\mathrm{I}$ Algebras In this paper we consider near inclusions $A\subseteq_\gamma B$ of C$^*$-algebras. We show that if $B$ is a separable type $\mathrm{I}$ C$^*$-algebra and $A$ satisfies Kadison's similarity problem, then $A$ is also type $\mathrm{I}$ and use this to obtain an embedding of $A$ into $B$.
Keywords:C$^*$-algebras, near inclusions, perturbations, type I C$^*$-algebras, similarity problem Category:46L05 |
8. CJM 2011 (vol 64 pp. 1201)
The Central Limit Theorem for Subsequences in Probabilistic Number Theory Let $(n_k)_{k \geq 1}$ be an increasing sequence of positive integers, and let $f(x)$ be a real function satisfying
\begin{equation}
\tag{1}
f(x+1)=f(x), \qquad \int_0^1 f(x) ~dx=0,\qquad
\operatorname{Var_{[0,1]}}
f \lt \infty.
\end{equation}
If $\lim_{k \to \infty} \frac{n_{k+1}}{n_k} = \infty$
the distribution of
\begin{equation}
\tag{2}
\frac{\sum_{k=1}^N f(n_k x)}{\sqrt{N}}
\end{equation}
converges to a Gaussian distribution. In the case
$$
1 \lt \liminf_{k \to \infty} \frac{n_{k+1}}{n_k}, \qquad \limsup_{k \to \infty} \frac{n_{k+1}}{n_k} \lt \infty
$$
there is a complex interplay between the analytic properties of the
function $f$, the number-theoretic properties of $(n_k)_{k \geq 1}$,
and the limit distribution of (2).
In this paper we prove that any sequence $(n_k)_{k \geq 1}$ satisfying
$\limsup_{k \to \infty} \frac{n_{k+1}}{n_k} = 1$ contains a nontrivial
subsequence $(m_k)_{k \geq 1}$ such that for any function satisfying
(1) the distribution of
$$
\frac{\sum_{k=1}^N f(m_k x)}{\sqrt{N}}
$$
converges to a Gaussian distribution. This result is best possible: for any
$\varepsilon\gt 0$ there exists a sequence $(n_k)_{k \geq 1}$ satisfying $\limsup_{k \to
\infty} \frac{n_{k+1}}{n_k} \leq 1 + \varepsilon$ such that for every nontrivial
subsequence $(m_k)_{k \geq 1}$ of $(n_k)_{k \geq 1}$ the distribution
of (2) does not converge to a Gaussian distribution for some $f$.
Our result can be viewed as a Ramsey type result: a sufficiently dense
increasing integer sequence contains a subsequence having a certain
requested number-theoretic property.
Keywords:central limit theorem, lacunary sequences, linear Diophantine equations, Ramsey type theorem Categories:60F05, 42A55, 11D04, 05C55, 11K06 |
9. CJM 2011 (vol 64 pp. 892)
Boundedness of CalderÃ³n-Zygmund Operators on Non-homogeneous Metric Measure Spaces Let $({\mathcal X}, d, \mu)$ be a
separable metric measure space satisfying the known upper
doubling condition, the geometrical doubling condition, and the
non-atomic condition that $\mu(\{x\})=0$ for all $x\in{\mathcal X}$.
In this paper, we show that the boundedness of a CalderÃ³n-Zygmund
operator $T$ on $L^2(\mu)$ is equivalent to that of $T$ on
$L^p(\mu)$ for some $p\in (1, \infty)$, and that of $T$ from $L^1(\mu)$
to $L^{1,\,\infty}(\mu).$ As an application, we prove that if $T$ is a
CalderÃ³n-Zygmund operator bounded on $L^2(\mu)$,
then its maximal operator is bounded on $L^p(\mu)$
for all $p\in (1, \infty)$ and from
the space of all complex-valued Borel measures on
${\mathcal X}$ to $L^{1,\,\infty}(\mu)$.
All these results generalize the corresponding results of Nazarov et al.
on metric spaces with
measures satisfying the so-called polynomial growth condition.
Keywords:upper doubling, geometrical doubling, dominating function, weak type $(1,1)$ estimate, CalderÃ³n-Zygmund operator, maximal operator Categories:42B20, 42B25, 30L99 |
10. CJM 2011 (vol 63 pp. 500)
One-Parameter Continuous Fields of Kirchberg Algebras. II Parallel to the first two authors' earlier classification of separable, unita
one-parameter, continuous fields of Kirchberg algebras with torsion free
$\mathrm{K}$-groups supported in one dimension, one-parameter, separable, uni
continuous fields of AF-algebras are classified by their ordered
$\mathrm{K}_0$-sheaves. Effros-Handelman-Shen type theorems are pr separable
unital one-parameter continuous fields of AF-algebras and Kirchberg algebras.
Keywords:continuous fields of C$^*$-algebras, $\mathrm{K}_0$-presheaves, Effros--Handeen type theorem Category:46L35 |
11. CJM 2010 (vol 62 pp. 961)
Multiplicative Isometries and Isometric Zero-Divisors
For some Banach spaces of analytic functions in the unit disk
(weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the
isometric pointwise multipliers are found to be unimodular constants.
As a consequence, it is shown that none of those spaces have isometric
zero-divisors. Isometric coefficient multipliers are also
investigated.
Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlet-type spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zero-divisors Categories:30H05, 46E15 |
12. CJM 2010 (vol 62 pp. 827)
BMO Functions and Carleson Measures with Values in Uniformly Convex Spaces This paper studies the relationship between vector-valued BMO functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbf{T}$, respectively. For $1< q<\infty$ and a Banach space $B$, we prove that there exists a positive constant $c$ such that $$\sup_{z_0\in D}\int_{D}(1-|z|)^{q-1}\|\nabla f(z)\|^q P_{z_0}(z) dA(z) \le c^q\sup_{z_0\in D}\int_{\mathbf{T}}\|f(z)-f(z_0)\|^qP_{z_0}(z) dm(z)$$ holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$-uniformly convex, where $$P_{z_0}(z)=\frac{1-|z_0|^2}{|1-\bar{z_0}z|^2} .$$ The validity of the converse inequality is equivalent to the existence of an equivalent $q$-uniformly smooth norm.
Keywords:BMO, Carleson measures, Lusin type, Lusin cotype, uniformly convex spaces, uniformly smooth spaces Categories:46E40, 42B25, 46B20 |
13. CJM 2010 (vol 62 pp. 1116)
Degenerate p-Laplacian Operators and Hardy Type Inequalities on
H-Type Groups Let $\mathbb G$ be a step-two nilpotent group of H-type with Lie algebra $\mathfrak G=V\oplus \mathfrak t$. We define a class of vector fields $X=\{X_j\}$ on $\mathbb G$ depending on a real parameter $k\ge 1$, and we consider the corresponding $p$-Laplacian operator $L_{p,k} u= \operatorname{div}_X (|\nabla_{X} u|^{p-2} \nabla_X u)$. For $k=1$ the vector fields $X=\{X_j\}$ are the left invariant vector fields corresponding to an orthonormal basis of $V$; for $\mathbb G$ being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator $L_{p,k}$ and as an application, we get a Hardy type inequality associated with $X$.
Keywords:fundamental solutions, degenerate Laplacians, Hardy inequality, H-type groups Categories:35H30, 26D10, 22E25 |
14. CJM 2008 (vol 60 pp. 1067)
On Types for Unramified $p$-Adic Unitary Groups Let $F$ be a non-archimedean local field of residue characteristic
neither 2 nor 3 equipped with a galois involution with fixed field
$F_0$, and let $G$ be a symplectic group over $F$ or an unramified
unitary group over $F_0$. Following the methods of Bushnell--Kutzko for
$\GL(N,F)$, we define an analogue of a simple type attached to a
certain skew simple stratum, and realize a type in $G$. In
particular, we obtain an irreducible supercuspidal representation of
$G$ like $\GL(N,F)$.
Keywords:$p$-adic unitary group, type, supercuspidal representation, Hecke algebra Categories:22E50, 22D99 |
15. CJM 2008 (vol 60 pp. 391)
The Geometry of the Weak Lefschetz Property and Level Sets of Points In a recent paper, F. Zanello showed that level Artinian algebras in 3
variables can fail to have the Weak Lefschetz Property (WLP), and can
even fail to have unimodal Hilbert function. We show that the same is
true for the Artinian reduction of reduced, level sets of points in
projective 3-space. Our main goal is to begin an understanding of how
the geometry of a set of points can prevent its Artinian reduction
from having WLP, which in itself is a very algebraic notion. More
precisely, we produce level sets of points whose Artinian reductions
have socle types 3 and 4 and arbitrary socle degree $\geq 12$ (in the
worst case), but fail to have WLP. We also produce a level set of
points whose Artinian reduction fails to have unimodal Hilbert
function; our example is based on Zanello's example. Finally, we show
that a level set of points can have Artinian reduction that has WLP
but fails to have the Strong Lefschetz Property. While our
constructions are all based on basic double G-linkage, the
implementations use very different methods.
Keywords:Weak Lefschetz Property, Strong Lefschetz Property, basic double G-linkage, level, arithmetically Gorenstein, arithmetically Cohen--Macaulay, socle type, socle degree, Artinian reduction Categories:13D40, 13D02, 14C20, 13C40, 13C13, 14M05 |
16. CJM 2008 (vol 60 pp. 379)
Finite Cohen--Macaulay Type and Smooth Non-Commutative Schemes A commutative local Cohen--Macaulay ring $R$ of finite Cohen--Macaulay type is known to be an isolated
singularity; that is, $\Spec(R) \setminus \{ \mathfrak {m} \}$ is smooth.
This paper proves a non-commutative analogue. Namely, if $A$ is a
(non-commutative) graded Artin--Schelter \CM\ algebra which is fully
bounded Noetherian and
has finite Cohen--Macaulay type, then the non-commutative projective scheme determined by
$A$ is smooth.
Keywords:Artin--Schelter Cohen--Macaulay algebra, Artin--Schelter Gorenstein algebra, Auslander's theorem on finite Cohen--Macaulay type, Cohen--Macaulay ring, fully bounded Noetherian algebra, isolated singularity, maximal Cohen--Macaulay module, non-commutative Categories:14A22, 16E65, 16W50 |
17. CJM 2005 (vol 57 pp. 648)
Branching Rules for Principal Series Representations of $SL(2)$ over a $p$-adic Field We explicitly describe the decomposition into irreducibles of
the restriction of the principal
series representations of $SL(2,k)$, for $k$ a $p$-adic field,
to each of its two maximal compact subgroups (up to conjugacy).
We identify these irreducible subrepresentations in the
Kirillov-type classification
of Shalika. We go on to explicitly describe the decomposition
of the reducible principal series of $SL(2,k)$ in terms of the
restrictions of its irreducible constituents to a maximal compact
subgroup.
Keywords:representations of $p$-adic groups, $p$-adic integers, orbit method, $K$-types Categories:20G25, 22E35, 20H25 |
18. CJM 2004 (vol 56 pp. 897)
Finding and Excluding $b$-ary Machin-Type Individual Digit Formulae Constants with formulae of the form treated by D.~Bailey,
P.~Borwein, and S.~Plouffe (\emph{BBP formulae} to a given base $b$) have
interesting computational properties, such as allowing single
digits in their base $b$ expansion to be independently computed,
and there are hints that they
should be \emph{normal} numbers, {\em i.e.,} that their base $b$ digits
are randomly distributed. We study a formally limited subset of BBP
formulae, which we call \emph{Machin-type BBP formulae}, for which it
is relatively easy to determine whether or not a given constant
$\kappa$ has a Machin-type BBP formula. In particular, given $b \in
\mathbb{N}$, $b>2$, $b$ not a proper power, a $b$-ary Machin-type
BBP arctangent formula for $\kappa$ is a formula of the form $\kappa
= \sum_{m} a_m \arctan(-b^{-m})$, $a_m \in \mathbb{Q}$, while when
$b=2$, we also allow terms of the form $a_m \arctan(1/(1-2^m))$. Of
particular interest, we show that $\pi$ has no Machin-type BBP
arctangent formula when $b \neq 2$. To the best of our knowledge,
when there is no Machin-type BBP formula for a constant then no BBP
formula of any form is known for that constant.
Keywords:BBP formulae, Machin-type formulae, arctangents,, logarithms, normality, Mersenne primes, Bang's theorem,, Zsigmondy's theorem, primitive prime factors, $p$-adic analysis Categories:11Y99, 11A51, 11Y50, 11K36, 33B10 |
19. CJM 1998 (vol 50 pp. 152)
Inequalities for rational functions with prescribed poles This paper considers the rational system ${\cal P}_n
(a_1,a_2,\ldots,a_n):= \bigl\{ {P(x) \over \prod_{k=1}^n (x-a_k)},
P\in {\cal P}_n\bigr\}$ with nonreal elements in
$\{a_k\}_{k=1}^{n}\subset\Bbb{C}\setminus [-1,1]$ paired by complex
conjugation. It gives a sharp (to constant) Markov-type inequality
for real rational functions in ${\cal P}_n (a_1,a_2,\ldots,a_n)$.
The corresponding Markov-type inequality for high derivatives
is established, as well as Nikolskii-type inequalities. Some
sharp Markov- and Bernstein-type inequalities with curved majorants
for rational functions in ${\cal P}_n(a_1,a_2,\ldots,a_n)$ are
obtained, which generalize some results for the classical
polynomials. A sharp Schur-type inequality is also proved and
plays a key role in the proofs of our main results.
Keywords:Markov-type inequality, Bernstein-type inequality, Nikolskii-type inequality, Schur-type inequality, rational functions with prescribed poles, curved majorants, Chebyshev polynomials Categories:41A17, 26D07, 26C15 |
20. CJM 1998 (vol 50 pp. 210)
Isomorphisms between generalized Cartan type $W$ Lie algebras in characteristic $0$ In this paper, we determine when two simple generalized Cartan
type $W$ Lie algebras $W_d (A, T, \varphi)$ are isomorphic, and discuss
the relationship between the Jacobian conjecture and the generalized
Cartan type $W$ Lie algebras.
Keywords:Simple Lie algebras, the general Lie algebra, generalized Cartan type $W$ Lie algebras, isomorphism, Jacobian conjecture Categories:17B40, 17B65, 17B56, 17B68 |
21. CJM 1997 (vol 49 pp. 675)
Some adjunction-theoretic properties of codimension two non-singular subvarities of quadrics We make precise the structure of the first two reduction morphisms
associated with codimension two non-singular subvarieties
of non-singular quadrics $\Q^n$, $n\geq 5$.
We give a coarse classification of the same class of subvarieties
when they are assumed not to be of log-general-type.}
Keywords:Adjunction Theory, classification, codimension two, conic bundles,, low codimension, non log-general-type, quadric, reduction, special, variety. Categories:14C05, 14E05, 14E25, 14E30, 14E35, 14J10 |