Expand all Collapse all | Results 1 - 4 of 4 |
1. CJM Online first
On the Local Convexity of Intersection Bodies of Revolution One of the fundamental results in Convex Geometry is Busemann's
theorem, which states that the intersection body of a symmetric convex
body is convex. Thus, it is only natural to ask if there is a
quantitative version of Busemann's theorem, i.e., if the intersection
body operation actually improves convexity. In this paper we
concentrate on the symmetric bodies of revolution to provide several
results on the (strict) improvement of convexity under the
intersection body operation. It is shown that the intersection body of
a symmetric convex body of revolution has the same asymptotic behavior
near the equator as the Euclidean
ball. We apply this result to show that in sufficiently high
dimension the double intersection body of a symmetric convex body of
revolution is very close to an ellipsoid in the Banach-Mazur
distance. We also prove results on the local convexity at the equator
of intersection bodies in the class of star bodies of revolution.
Keywords:convex bodies, intersection bodies of star bodies, Busemann's theorem, local convexity Categories:52A20, 52A38, 44A12 |
2. CJM 2011 (vol 64 pp. 1248)
Darmon's Points and Quaternionic Shimura Varieties In this paper, we generalize a conjecture due to Darmon and Logan in
an adelic setting. We study the relation between our construction and
Kudla's works on cycles on orthogonal Shimura varieties. This relation
allows us to conjecture a Gross-Kohnen-Zagier theorem for Darmon's
points.
Keywords:elliptic curves, Stark-Heegner points, quaternionic Shimura varieties Categories:11G05, 14G35, 11F67, 11G40 |
3. CJM 2010 (vol 63 pp. 436)
Simplicial Complexes and Open Subsets of Non-Separable LF-Spaces
Let $F$ be a non-separable LF-space homeomorphic to
the direct sum $\sum_{n\in\mathbb{N}} \ell_2(\tau_n)$,
where $\aleph_0 < \tau_1 < \tau_2 < \cdots$.
It is proved that
every open subset $U$ of $F$ is homeomorphic to the product $|K| \times F$
for some locally finite-dimensional simplicial complex $K$ such that
every vertex $v \in K^{(0)}$ has the star $\operatorname{St}(v,K)$
with $\operatorname{card} \operatorname{St}(v,K)^{(0)} < \tau = \sup\tau_n$
(and $\operatorname{card} K^{(0)} \le \tau$),
and, conversely, if $K$ is such a simplicial complex,
then the product $|K| \times F$ can be embedded in $F$ as an open set,
where $|K|$ is the polyhedron of $K$ with the metric topology.
Keywords:LF-space, open set, simplicial complex, metric topology, locally finite-dimensional, star, small box product, ANR, $\ell_2(\tau)$, $\ell_2(\tau)$-manifold, open embedding, $\sum_{i\in\mathbb{N}}\ell_2(\tau_i)$ Categories:57N20, 46A13, 46T05, 57N17, 57Q05, 57Q40 |
4. CJM 2009 (vol 62 pp. 157)
Special Values of Class Group $L$-Functions for CM Fields Let $H$ be the Hilbert class field of a CM number field $K$ with
maximal totally real subfield $F$ of degree $n$ over $\mathbb{Q}$. We
evaluate the second term in the Taylor expansion at $s=0$ of the
Galois-equivariant $L$-function $\Theta_{S_{\infty}}(s)$ associated to
the unramified abelian characters of $\operatorname{Gal}(H/K)$. This is an identity
in the group ring $\mathbb{C}[\operatorname{Gal}(H/K)]$ expressing
$\Theta^{(n)}_{S_{\infty}}(0)$ as essentially a linear combination of
logarithms of special values $\{\Psi(z_{\sigma})\}$, where $\Psi\colon
\mathbb{H}^{n} \rightarrow \mathbb{R}$ is a Hilbert modular function for a congruence
subgroup of $SL_{2}(\mathcal{O}_{F})$ and $\{z_{\sigma}: \sigma \in
\operatorname{Gal}(H/K)\}$ are CM points on a universal Hilbert modular variety. We
apply this result to express the relative class number $h_{H}/h_{K}$
as a rational multiple of the determinant of an $(h_{K}-1) \times
(h_{K}-1)$ matrix of logarithms of ratios of special values
$\Psi(z_{\sigma})$, thus giving rise to candidates for higher analogs
of elliptic units. Finally, we obtain a product formula for
$\Psi(z_{\sigma})$ in terms of exponentials of special values of
$L$-functions.
Keywords:Artin $L$-function, CM point, Hilbert modular function, Rubin-Stark conjecture Categories:11R42, 11F30 |