CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword sphere

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2013 (vol 66 pp. 141)

Caillat-Gibert, Shanti; Matignon, Daniel
Existence of Taut Foliations on Seifert Fibered Homology $3$-spheres
This paper concerns the problem of existence of taut foliations among $3$-manifolds. Since the contribution of David Gabai, we know that closed $3$-manifolds with non-trivial second homology group admit a taut foliation. The essential part of this paper focuses on Seifert fibered homology $3$-spheres. The result is quite different if they are integral or rational but non-integral homology $3$-spheres. Concerning integral homology $3$-spheres, we can see that all but the $3$-sphere and the Poincaré $3$-sphere admit a taut foliation. Concerning non-integral homology $3$-spheres, we prove there are infinitely many which admit a taut foliation, and infinitely many without taut foliation. Moreover, we show that the geometries do not determine the existence of taut foliations on non-integral Seifert fibered homology $3$-spheres.

Keywords:homology 3-spheres, taut foliation, Seifert-fibered 3-manifolds
Categories:57M25, 57M50, 57N10, 57M15

2. CJM 2012 (vol 66 pp. 760)

Hu, Shengda; Santoprete, Manuele
Regularization of the Kepler Problem on the Three-sphere
In this paper we regularize the Kepler problem on $S^3$ in several different ways. First, we perform a Moser-type regularization. Then, we adapt the Ligon-Schaaf regularization to our problem. Finally, we show that the Moser regularization and the Ligon-Schaaf map we obtained can be understood as the composition of the corresponding maps for the Kepler problem in Euclidean space and the gnomonic transformation.

Keywords:Kepler problem on the sphere, Ligon-Shaaf regularization, geodesic flow on the sphere
Category:70Fxx

3. CJM 1997 (vol 49 pp. 175)

Xu, Yuan
Orthogonal Polynomials for a Family of Product Weight Functions on the Spheres
Based on the theory of spherical harmonics for measures invariant under a finite reflection group developed by Dunkl recently, we study orthogonal polynomials with respect to the weight functions $|x_1|^{\alpha_1}\cdots |x_d|^{\alpha_d}$ on the unit sphere $S^{d-1}$ in $\RR^d$. The results include explicit formulae for orthonormal polynomials, reproducing and Poisson kernel, as well as intertwining operator.

Keywords:Orthogonal polynomials in several variables, sphere, h-harmonics
Categories:33C50, 33C45, 42C10

© Canadian Mathematical Society, 2014 : https://cms.math.ca/