1. CJM 2013 (vol 66 pp. 141)
 CaillatGibert, Shanti; Matignon, Daniel

Existence of Taut Foliations on Seifert Fibered Homology $3$spheres
This paper concerns the problem of existence of taut foliations among $3$manifolds.
Since the contribution of David Gabai,
we know that closed $3$manifolds with nontrivial second homology group
admit a taut foliation.
The essential part of this paper focuses on Seifert fibered homology $3$spheres.
The result is quite different if they are integral or rational but nonintegral homology $3$spheres.
Concerning integral homology $3$spheres, we can see that all but the $3$sphere and the PoincarÃ© $3$sphere admit a taut foliation.
Concerning nonintegral homology $3$spheres,
we prove there are infinitely many which admit a taut foliation, and infinitely many without taut foliation.
Moreover, we show that the geometries do not determine the existence of taut foliations
on nonintegral Seifert fibered homology $3$spheres.
Keywords:homology 3spheres, taut foliation, Seifertfibered 3manifolds Categories:57M25, 57M50, 57N10, 57M15 

2. CJM 2012 (vol 66 pp. 760)
 Hu, Shengda; Santoprete, Manuele

Regularization of the Kepler Problem on the Threesphere
In this paper we regularize the Kepler problem on $S^3$ in several
different ways. First, we perform a Mosertype regularization. Then, we
adapt the LigonSchaaf regularization to our problem. Finally, we show
that the Moser regularization and the LigonSchaaf map we obtained can be
understood as the composition of the corresponding maps for the Kepler problem
in Euclidean space and the gnomonic transformation.
Keywords:Kepler problem on the sphere, LigonShaaf regularization, geodesic flow on the sphere Category:70Fxx 

3. CJM 1997 (vol 49 pp. 175)
 Xu, Yuan

Orthogonal Polynomials for a Family of Product Weight Functions on the Spheres
Based on the theory of spherical harmonics for measures invariant
under a finite reflection group developed by Dunkl recently, we study
orthogonal polynomials with respect to the weight functions
$x_1^{\alpha_1}\cdots x_d^{\alpha_d}$ on the unit sphere $S^{d1}$ in
$\RR^d$. The results include explicit formulae for orthonormal polynomials,
reproducing and Poisson kernel, as well as intertwining operator.
Keywords:Orthogonal polynomials in several variables, sphere, hharmonics Categories:33C50, 33C45, 42C10 
