1. CJM 2015 (vol 67 pp. 481)
 an Huef, Astrid; Archbold, Robert John

The C*algebras of Compact Transformation Groups
We investigate the representation theory of the
crossedproduct $C^*$algebra associated to a compact group $G$
acting on a locally compact space $X$ when the stability subgroups
vary discontinuously.
Our main result applies when $G$ has a principal stability subgroup or
$X$ is locally of finite $G$orbit type. Then the upper multiplicity
of the representation of the crossed product induced from an
irreducible representation $V$ of a stability subgroup is obtained by
restricting $V$ to a certain closed subgroup of the stability subgroup
and taking the maximum of the multiplicities of the irreducible
summands occurring in the restriction of $V$. As a corollary we obtain
that when the trivial subgroup is a principal stability subgroup, the
crossed product is a Fell algebra if and only if every stability
subgroup is abelian. A second corollary is that the $C^*$algebra of
the motion group $\mathbb{R}^n\rtimes \operatorname{SO}(n)$ is a Fell algebra. This uses
the classical branching theorem for the special orthogonal group
$\operatorname{SO}(n)$ with respect to $\operatorname{SO}(n1)$. Since proper transformation
groups are locally induced from the actions of compact groups, we
describe how some of our results can be extended to transformation
groups that are locally proper.
Keywords:compact transformation group, proper action, spectrum of a C*algebra, multiplicity of a representation, crossedproduct C*algebra, continuoustrace C*algebra, Fell algebra Categories:46L05, 46L55 

2. CJM 2015 (vol 67 pp. 827)
 Kaniuth, Eberhard

The BochnerSchoenbergEberlein Property and Spectral Synthesis for Certain Banach Algebra Products
Associated with two commutative Banach algebras $A$ and $B$ and
a character $\theta$ of $B$ is a certain Banach algebra product
$A\times_\theta B$, which is a splitting extension of $B$ by
$A$. We investigate two topics for the algebra $A\times_\theta
B$ in relation to the corresponding ones of $A$ and $B$. The
first one is the BochnerSchoenbergEberlein property and the
algebra of BochnerSchoenbergEberlein functions on the spectrum,
whereas the second one concerns the wide range of spectral synthesis
problems for $A\times_\theta B$.
Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSEalgebra, BSEfunction Categories:46J10, 46J25, 43A30, 43A45 

3. CJM 2012 (vol 65 pp. 989)
 Chu, CH.; Velasco, M. V.

Automatic Continuity of Homomorphisms in Nonassociative Banach Algebras
We introduce the concept of a rare element in a nonassociative normed
algebra and show that the existence of such element is the only obstruction
to continuity of a surjective homomorphism from a nonassociative Banach
algebra to a unital normed algebra with simple completion. Unital
associative algebras do not admit any rare element and hence automatic
continuity holds.
Keywords:automatic continuity, nonassociative algebra, spectrum, rare operator, rare element Categories:46H40, 46H70 

4. CJM 2009 (vol 62 pp. 74)
 Ducrot, Arnaud; Liu, Zhihua; Magal, Pierre

Projectors on the Generalized Eigenspaces for Neutral Functional Differential Equations in $L^{p}$ Spaces
We present the explicit formulas for the projectors on the generalized
eigenspaces associated with some eigenvalues for linear neutral functional
differential equations (NFDE) in $L^{p}$ spaces by using integrated
semigroup theory. The analysis is based on the main result
established elsewhere by the authors and results by Magal and Ruan
on nondensely defined Cauchy problem.
We formulate the NFDE as a nondensely defined Cauchy problem and obtain
some spectral properties from which we then derive explicit formulas for
the projectors on the generalized eigenspaces associated with some
eigenvalues. Such explicit formulas are important in studying bifurcations
in some semilinear problems.
Keywords:neutral functional differential equations, semilinear problem, integrated semigroup, spectrum, projectors Categories:34K05, 35K57, 47A56, 47H20 

5. CJM 2000 (vol 52 pp. 1057)
 Urakawa, Hajime

The Spectrum of an Infinite Graph
In this paper, we consider the (essential) spectrum of the discrete
Laplacian of an infinite graph. We introduce a new quantity for an
infinite graph, in terms of which we give new lower bound estimates of
the (essential) spectrum and give also upper bound estimates when the
infinite graph is bipartite. We give sharp estimates of the
(essential) spectrum for several examples of infinite graphs.
Keywords:infinite graph, discrete Laplacian, spectrum, essential spectrum Categories:05C50, 58G25 
