Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword spaces

  Expand all        Collapse all Results 1 - 25 of 45

1. CJM Online first

Barros, Carlos Braga; Rocha, Victor; Souza, Josiney
Lyapunov Stability and Attraction Under Equivariant Maps
Let $M$ and $N$ be admissible Hausdorff topological spaces endowed with admissible families of open coverings. Assume that $\mathcal{S}$ is a semigroup acting on both $M$ and $N$. In this paper we study the behavior of limit sets, prolongations, prolongational limit sets, attracting sets, attractors and Lyapunov stable sets (all concepts defined for the action of the semigroup $\mathcal{S}$) under equivariant maps and semiconjugations from $M$ to $N$.

Keywords:Lyapunov stability, semigroup actions, generalized flows, equivariant maps, admissible topological spaces
Categories:37B25, 37C75, 34C27, 34D05

2. CJM Online first

Sadykov, Rustam
The Weak b-principle: Mumford Conjecture
In this note we introduce and study a new class of maps called oriented colored broken submersions. This is the simplest class of maps that satisfies a version of the b-principle and in dimension $2$ approximates the class of oriented submersions well in the sense that every oriented colored broken submersion of dimension $2$ to a closed simply connected manifold is bordant to a submersion. We show that the Madsen-Weiss theorem (the standard Mumford Conjecture) fits a general setting of the b-principle. Namely, a version of the b-principle for oriented colored broken submersions together with the Harer stability theorem and Miller-Morita theorem implies the Madsen-Weiss theorem.

Keywords:generalized cohomology theories, fold singularities, h-principle, infinite loop spaces
Categories:55N20, 53C23

3. CJM Online first

Abuaf, Roland; Boralevi, Ada
Orthogonal Bundles and Skew-Hamiltonian Matrices
Using properties of skew-Hamiltonian matrices and classic connectedness results, we prove that the moduli space $M_{ort}^0(r,n)$ of stable rank $r$ orthogonal vector bundles on $\mathbb{P}^2$, with Chern classes $(c_1,c_2)=(0,n)$, and trivial splitting on the general line, is smooth irreducible of dimension $(r-2)n-\binom{r}{2}$ for $r=n$ and $n \ge 4$, and $r=n-1$ and $n\ge 8$. We speculate that the result holds in greater generality.

Keywords:orthogonal vector bundles, moduli spaces, skew-Hamiltonian matrices
Categories:14J60, 15B99

4. CJM 2014 (vol 66 pp. 961)

Baird, Thomas
Moduli Spaces of Vector Bundles over a Real Curve: $\mathbb Z/2$-Betti Numbers
Moduli spaces of real bundles over a real curve arise naturally as Lagrangian submanifolds of the moduli space of semi-stable bundles over a complex curve. In this paper, we adapt the methods of Atiyah-Bott's ``Yang-Mills over a Riemann Surface'' to compute $\mathbb Z/2$-Betti numbers of these spaces.

Keywords:cohomology of moduli spaces, holomorphic vector bundles
Categories:32L05, 14P25

5. CJM 2013 (vol 65 pp. 1320)

Taniguchi, Takashi; Thorne, Frank
Orbital $L$-functions for the Space of Binary Cubic Forms
We introduce the notion of orbital $L$-functions for the space of binary cubic forms and investigate their analytic properties. We study their functional equations and residue formulas in some detail. Aside from their intrinsic interest, the results from this paper are used to prove the existence of secondary terms in counting functions for cubic fields. This is worked out in a companion paper.

Keywords:binary cubic forms, prehomogeneous vector spaces, Shintani zeta functions, $L$-functions, cubic rings and fields
Categories:11M41, 11E76

6. CJM 2013 (vol 66 pp. 1143)

Plevnik, Lucijan; Šemrl, Peter
Maps Preserving Complementarity of Closed Subspaces of a Hilbert Space
Let $\mathcal{H}$ and $\mathcal{K}$ be infinite-dimensional separable Hilbert spaces and ${\rm Lat}\,\mathcal{H}$ the lattice of all closed subspaces oh $\mathcal{H}$. We describe the general form of pairs of bijective maps $\phi , \psi : {\rm Lat}\,\mathcal{H} \to {\rm Lat}\,\mathcal{K}$ having the property that for every pair $U,V \in {\rm Lat}\,\mathcal{H}$ we have $\mathcal{H} = U \oplus V \iff \mathcal{K} = \phi (U) \oplus \psi (V)$. Then we reformulate this theorem as a description of bijective image equality and kernel equality preserving maps acting on bounded linear idempotent operators. Several known structural results for maps on idempotents are easy consequences.

Keywords:Hilbert space, lattice of closed subspaces, complemented subspaces, adjacent subspaces, idempotents
Categories:46B20, 47B49

7. CJM 2013 (vol 66 pp. 1382)

Wu, Xinfeng
Weighted Carleson Measure Spaces Associated with Different Homogeneities
In this paper, we introduce weighted Carleson measure spaces associated with different homogeneities and prove that these spaces are the dual spaces of weighted Hardy spaces studied in a forthcoming paper. As an application, we establish the boundedness of composition of two Calderón-Zygmund operators with different homogeneities on the weighted Carleson measure spaces; this, in particular, provides the weighted endpoint estimates for the operators studied by Phong-Stein.

Keywords:composition of operators, weighted Carleson measure spaces, duality
Categories:42B20, 42B35

8. CJM 2013 (vol 66 pp. 400)

Mendonça, Bruno; Tojeiro, Ruy
Umbilical Submanifolds of $\mathbb{S}^n\times \mathbb{R}$
We give a complete classification of umbilical submanifolds of arbitrary dimension and codimension of $\mathbb{S}^n\times \mathbb{R}$, extending the classification of umbilical surfaces in $\mathbb{S}^2\times \mathbb{R}$ by Souam and Toubiana as well as the local description of umbilical hypersurfaces in $\mathbb{S}^n\times \mathbb{R}$ by Van der Veken and Vrancken. We prove that, besides small spheres in a slice, up to isometries of the ambient space they come in a two-parameter family of rotational submanifolds whose substantial codimension is either one or two and whose profile is a curve in a totally geodesic $\mathbb{S}^1\times \mathbb{R}$ or $\mathbb{S}^2\times \mathbb{R}$, respectively, the former case arising in a one-parameter family. All of them are diffeomorphic to a sphere, except for a single element that is diffeomorphic to Euclidean space. We obtain explicit parametrizations of all such submanifolds. We also study more general classes of submanifolds of $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$. In particular, we give a complete description of all submanifolds in those product spaces for which the tangent component of a unit vector field spanning the factor $\mathbb{R}$ is an eigenvector of all shape operators. We show that surfaces with parallel mean curvature vector in $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$ having this property are rotational surfaces, and use this fact to improve some recent results by Alencar, do Carmo, and Tribuzy. We also obtain a Dajczer-type reduction of codimension theorem for submanifolds of $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$.

Keywords:umbilical submanifolds, product spaces $\mathbb{S}^n\times \mathbb{R}$ and $\mathbb{H}^n\times \mathbb{R}$
Categories:53B25, 53C40

9. CJM 2013 (vol 66 pp. 387)

Mashreghi, J.; Shabankhah, M.
Composition of Inner Functions
We study the image of the model subspace $K_\theta$ under the composition operator $C_\varphi$, where $\varphi$ and $\theta$ are inner functions, and find the smallest model subspace which contains the linear manifold $C_\varphi K_\theta$. Then we characterize the case when $C_\varphi$ maps $K_\theta$ into itself. This case leads to the study of the inner functions $\varphi$ and $\psi$ such that the composition $\psi\circ\varphi$ is a divisor of $\psi$ in the family of inner functions.

Keywords:composition operators, inner functions, Blaschke products, model subspaces
Categories:30D55, 30D05, 47B33

10. CJM 2013 (vol 65 pp. 1217)

Cruz, Victor; Mateu, Joan; Orobitg, Joan
Beltrami Equation with Coefficient in Sobolev and Besov Spaces
Our goal in this work is to present some function spaces on the complex plane $\mathbb C$, $X(\mathbb C)$, for which the quasiregular solutions of the Beltrami equation, $\overline\partial f (z) = \mu(z) \partial f (z)$, have first derivatives locally in $X(\mathbb C)$, provided that the Beltrami coefficient $\mu$ belongs to $X(\mathbb C)$.

Keywords:quasiregular mappings, Beltrami equation, Sobolev spaces, Calderón-Zygmund operators
Categories:30C62, 35J99, 42B20

11. CJM 2012 (vol 65 pp. 510)

Blasco de la Cruz, Oscar; Villarroya Alvarez, Paco
Transference of vector-valued multipliers on weighted $L^p$-spaces
We prove restriction and extension of multipliers between weighted Lebesgue spaces with two different weights, which belong to a class more general than periodic weights, and two different exponents of integrability which can be below one. We also develop some ad-hoc methods which apply to weights defined by the product of periodic weights with functions of power type. Our vector-valued approach allow us to extend results to transference of maximal multipliers and provide transference of Littlewood-Paley inequalities.

Keywords:Fourier multipliers, restriction theorems, weighted spaces
Categories:42B15, 42B35

12. CJM 2012 (vol 65 pp. 299)

Grafakos, Loukas; Miyachi, Akihiko; Tomita, Naohito
On Multilinear Fourier Multipliers of Limited Smoothness
In this paper, we prove certain $L^2$-estimate for multilinear Fourier multiplier operators with multipliers of limited smoothness. As a result, we extend the result of Calderón and Torchinsky in the linear theory to the multilinear case. The sharpness of our results and some related estimates in Hardy spaces are also discussed.

Keywords:multilinear Fourier multipliers, Hörmander multiplier theorem, Hardy spaces
Categories:42B15, 42B20

13. CJM 2012 (vol 65 pp. 757)

Delanoë, Philippe; Rouvière, François
Positively Curved Riemannian Locally Symmetric Spaces are Positively Squared Distance Curved
The squared distance curvature is a kind of two-point curvature the sign of which turned out crucial for the smoothness of optimal transportation maps on Riemannian manifolds. Positivity properties of that new curvature have been established recently for all the simply connected compact rank one symmetric spaces, except the Cayley plane. Direct proofs were given for the sphere, an indirect one via the Hopf fibrations) for the complex and quaternionic projective spaces. Here, we present a direct proof of a property implying all the preceding ones, valid on every positively curved Riemannian locally symmetric space.

Keywords:symmetric spaces, rank one, positive curvature, almost-positive $c$-curvature
Categories:53C35, 53C21, 53C26, 49N60

14. CJM 2012 (vol 65 pp. 222)

Sauer, N. W.
Distance Sets of Urysohn Metric Spaces
A metric space $\mathrm{M}=(M;\operatorname{d})$ is {\em homogeneous} if for every isometry $f$ of a finite subspace of $\mathrm{M}$ to a subspace of $\mathrm{M}$ there exists an isometry of $\mathrm{M}$ onto $\mathrm{M}$ extending $f$. The space $\mathrm{M}$ is {\em universal} if it isometrically embeds every finite metric space $\mathrm{F}$ with $\operatorname{dist}(\mathrm{F})\subseteq \operatorname{dist}(\mathrm{M})$. (With $\operatorname{dist}(\mathrm{M})$ being the set of distances between points in $\mathrm{M}$.) A metric space $\boldsymbol{U}$ is an {\em Urysohn} metric space if it is homogeneous, universal, separable and complete. (It is not difficult to deduce that an Urysohn metric space $\boldsymbol{U}$ isometrically embeds every separable metric space $\mathrm{M}$ with $\operatorname{dist}(\mathrm{M})\subseteq \operatorname{dist}(\boldsymbol{U})$.) The main results are: (1) A characterization of the sets $\operatorname{dist}(\boldsymbol{U})$ for Urysohn metric spaces $\boldsymbol{U}$. (2) If $R$ is the distance set of an Urysohn metric space and $\mathrm{M}$ and $\mathrm{N}$ are two metric spaces, of any cardinality with distances in $R$, then they amalgamate disjointly to a metric space with distances in $R$. (3) The completion of every homogeneous, universal, separable metric space $\mathrm{M}$ is homogeneous.

Keywords:partitions of metric spaces, Ramsey theory, metric geometry, Urysohn metric space, oscillation stability
Categories:03E02, 22F05, 05C55, 05D10, 22A05, 51F99

15. CJM 2012 (vol 65 pp. 66)

Deng, Shaoqiang; Hu, Zhiguang
On Flag Curvature of Homogeneous Randers Spaces
In this paper we give an explicit formula for the flag curvature of homogeneous Randers spaces of Douglas type and apply this formula to obtain some interesting results. We first deduce an explicit formula for the flag curvature of an arbitrary left invariant Randers metric on a two-step nilpotent Lie group. Then we obtain a classification of negatively curved homogeneous Randers spaces of Douglas type. This results, in particular, in many examples of homogeneous non-Riemannian Finsler spaces with negative flag curvature. Finally, we prove a rigidity result that a homogeneous Randers space of Berwald type whose flag curvature is everywhere nonzero must be Riemannian.

Keywords:homogeneous Randers manifolds, flag curvature, Douglas spaces, two-step nilpotent Lie groups
Categories:22E46, 53C30

16. CJM 2011 (vol 64 pp. 778)

Calvaruso, Giovanni; Fino, Anna
Ricci Solitons and Geometry of Four-dimensional Non-reductive Homogeneous Spaces
We study the geometry of non-reductive $4$-dimensional homogeneous spaces. In particular, after describing their Levi-Civita connection and curvature properties, we classify homogeneous Ricci solitons on these spaces, proving the existence of shrinking, expanding and steady examples. For all the non-trivial examples we find, the Ricci operator is diagonalizable.

Keywords:non-reductive homogeneous spaces, pseudo-Riemannian metrics, Ricci solitons, Einstein-like metrics
Categories:53C21, 53C50, 53C25

17. CJM 2011 (vol 64 pp. 755)

Brown, Lawrence G.; Lee, Hyun Ho
Homotopy Classification of Projections in the Corona Algebra of a Non-simple $C^*$-algebra
We study projections in the corona algebra of $C(X)\otimes K$, where K is the $C^*$-algebra of compact operators on a separable infinite dimensional Hilbert space and $X=[0,1],[0,\infty),(-\infty,\infty)$, or $[0,1]/\{ 0,1 \}$. Using BDF's essential codimension, we determine conditions for a projection in the corona algebra to be liftable to a projection in the multiplier algebra. We also determine the conditions for two projections to be equal in $K_0$, Murray-von Neumann equivalent, unitarily equivalent, or homotopic. In light of these characterizations, we construct examples showing that the equivalence notions above are all distinct.

Keywords:essential codimension, continuous field of Hilbert spaces, Corona algebra
Categories:46L05, 46L80

18. CJM 2011 (vol 64 pp. 1329)

Izuchi, Kei Ji; Nguyen, Quang Dieu; Ohno, Shûichi
Composition Operators Induced by Analytic Maps to the Polydisk
We study properties of composition operators induced by symbols acting from the unit disk to the polydisk. This result will be involved in the investigation of weighted composition operators on the Hardy space on the unit disk and moreover be concerned with composition operators acting from the Bergman space to the Hardy space on the unit disk.

Keywords:composition operators, Hardy spaces, polydisk
Categories:47B33, 32A35, 30H10

19. CJM 2011 (vol 64 pp. 44)

Carvalho, T. M. M.; Moreira, H. N.; Tenenblat, K.
Surfaces of Rotation with Constant Mean Curvature in the Direction of a Unitary Normal Vector Field in a Randers Space
We consider the Randers space $(V^n,F_b)$ obtained by perturbing the Euclidean metric by a translation, $F_b=\alpha+\beta$, where $\alpha$ is the Euclidean metric and $\beta$ is a $1$-form with norm $b$, $0\leq b\lt 1$. We introduce the concept of a hypersurface with constant mean curvature in the direction of a unitary normal vector field. We obtain the ordinary differential equation that characterizes the rotational surfaces $(V^3,F_b)$ of constant mean curvature (cmc) in the direction of a unitary normal vector field. These equations reduce to the classical equation of the rotational cmc surfaces in Euclidean space, when $b=0$. It also reduces to the equation that characterizes the minimal rotational surfaces in $(V^3,F_b)$ when $H=0$, obtained by M. Souza and K. Tenenblat. Although the differential equation depends on the choice of the normal direction, we show that both equations determine the same rotational surface, up to a reflection. We also show that the round cylinders are cmc surfaces in the direction of the unitary normal field. They are generated by the constant solution of the differential equation. By considering the equation as a nonlinear dynamical system, we provide a qualitative analysis, for $0\lt b\lt \frac{\sqrt{3}}{3}$. Using the concept of stability and considering the linearization around the single equilibrium point (the constant solution), we verify that the solutions are locally asymptotically stable spirals. This is proved by constructing a Lyapunov function for the dynamical system and by determining the basin of stability of the equilibrium point. The surfaces of rotation generated by such solutions tend asymptotically to one end of the cylinder.

Keywords:Finsler spaces, Randers spaces, mean curvature, Liapunov functions

20. CJM 2010 (vol 62 pp. 1182)

Yue, Hong
A Fractal Function Related to the John-Nirenberg Inequality for $Q_{\alpha}({\mathbb R^n})$
A borderline case function $f$ for $ Q_{\alpha}({\mathbb R^n})$ spaces is defined as a Haar wavelet decomposition, with the coefficients depending on a fixed parameter $\beta>0$. On its support $I_0=[0, 1]^n$, $f(x)$ can be expressed by the binary expansions of the coordinates of $x$. In particular, $f=f_{\beta}\in Q_{\alpha}({\mathbb R^n})$ if and only if $\alpha<\beta<\frac{n}{2}$, while for $\beta=\alpha$, it was shown by Yue and Dafni that $f$ satisfies a John--Nirenberg inequality for $ Q_{\alpha}({\mathbb R^n})$. When $\beta\neq 1$, $f$ is a self-affine function. It is continuous almost everywhere and discontinuous at all dyadic points inside $I_0$. In addition, it is not monotone along any coordinate direction in any small cube. When the parameter $\beta\in (0, 1)$, $f$ is onto from $I_0$ to $[-\frac{1}{1-2^{-\beta}}, \frac{1}{1-2^{-\beta}}]$, and the graph of $f$ has a non-integer fractal dimension $n+1-\beta$.

Keywords:Haar wavelets, Q spaces, John-Nirenberg inequality, Greedy expansion, self-affine, fractal, Box dimension
Categories:42B35, 42C10, 30D50, 28A80

21. CJM 2010 (vol 62 pp. 1246)

Chaput, P. E.; Manivel, L.; Perrin, N.
Quantum Cohomology of Minuscule Homogeneous Spaces III. Semi-Simplicity and Consequences
We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, specialized at $q=1$, is semisimple. This implies that complex conjugation defines an algebra automorphism of the quantum cohomology ring localized at the quantum parameter. We check that this involution coincides with the strange duality defined in our previous article. We deduce Vafa--Intriligator type formulas for the Gromov--Witten invariants.

Keywords:quantum cohomology, minuscule homogeneous spaces, Schubert calculus, quantum Euler class
Categories:14M15, 14N35

22. CJM 2010 (vol 62 pp. 961)

Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan
Multiplicative Isometries and Isometric Zero-Divisors
For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.

Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlet-type spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zero-divisors
Categories:30H05, 46E15

23. CJM 2010 (vol 62 pp. 827)

Ouyang, Caiheng; Xu, Quanhua
BMO Functions and Carleson Measures with Values in Uniformly Convex Spaces
This paper studies the relationship between vector-valued BMO functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbf{T}$, respectively. For $1< q<\infty$ and a Banach space $B$, we prove that there exists a positive constant $c$ such that $$\sup_{z_0\in D}\int_{D}(1-|z|)^{q-1}\|\nabla f(z)\|^q P_{z_0}(z) dA(z) \le c^q\sup_{z_0\in D}\int_{\mathbf{T}}\|f(z)-f(z_0)\|^qP_{z_0}(z) dm(z)$$ holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$-uniformly convex, where $$P_{z_0}(z)=\frac{1-|z_0|^2}{|1-\bar{z_0}z|^2} .$$ The validity of the converse inequality is equivalent to the existence of an equivalent $q$-uniformly smooth norm.

Keywords:BMO, Carleson measures, Lusin type, Lusin cotype, uniformly convex spaces, uniformly smooth spaces
Categories:46E40, 42B25, 46B20

24. CJM 2009 (vol 62 pp. 439)

Sundhäll, Marcus; Tchoundja, Edgar
On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by Sundhäll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.

Keywords:Hankel forms, Schatten—von Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, Möbius group
Categories:32A25, 32A35, 32A37, 47B35

25. CJM 2009 (vol 62 pp. 52)

Deng, Shaoqiang
An Algebraic Approach to Weakly Symmetric Finsler Spaces
In this paper, we introduce a new algebraic notion, weakly symmetric Lie algebras, to give an algebraic description of an interesting class of homogeneous Riemann--Finsler spaces, weakly symmetric Finsler spaces. Using this new definition, we are able to give a classification of weakly symmetric Finsler spaces with dimensions $2$ and $3$. Finally, we show that all the non-Riemannian reversible weakly symmetric Finsler spaces we find are non-Berwaldian and with vanishing S-curvature. This means that reversible non-Berwaldian Finsler spaces with vanishing S-curvature may exist at large. Hence the generalized volume comparison theorems due to Z. Shen are valid for a rather large class of Finsler spaces.

Keywords:weakly symmetric Finsler spaces, weakly symmetric Lie algebras, Berwald spaces, S-curvature
Categories:53C60, 58B20, 22E46, 22E60
   1 2    

© Canadian Mathematical Society, 2015 :