Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword sous-espace invariant

  Expand all        Collapse all Results 1 - 1 of 1

1. CJM 2001 (vol 53 pp. 944)

Ludwig, J.; Molitor-Braun, C.
Représentations irréductibles bornées des groupes de Lie exponentiels
Let $G$ be a solvable exponential Lie group. We characterize all the continuous topologically irreducible bounded representations $(T, \calU)$ of $G$ on a Banach space $\calU$ by giving a $G$-orbit in $\frn^*$ ($\frn$ being the nilradical of $\frg$), a topologically irreducible representation of $L^1(\RR^n, \o)$, for a certain weight $\o$ and a certain $n \in \NN$, and a topologically simple extension norm. If $G$ is not symmetric, \ie, if the weight $\o$ is exponential, we get a new type of representations which are fundamentally different from the induced representations. Soit $G$ un groupe de Lie r\'esoluble exponentiel. Nous caract\'erisons toutes les repr\'esentations $(T, \calU)$ continues born\'ees topologiquement irr\'eductibles de $G$ dans un espace de Banach $\calU$ \`a l'aide d'une $G$-orbite dans $\frn^*$ ($\frn$ \'etant le radical nilpotent de $\frg$), d'une repr\'esentation topologiquement irr\'eductible de $L^1(\RR^n, \o)$, pour un certain poids $\o$ et un certain $n \in \NN$, d'une norme d'extension topologiquement simple. Si $G$ n'est pas sym\'etrique, c. \`a d. si le poids $\o$ est exponentiel, nous obtenons un nouveau type de repr\'esentations qui sont fondamentalement diff\'erentes des repr\'esentations induites.

Keywords:groupe de Lie résoluble exponentiel, représentation bornée topologiquement irréductible, orbite, norme d'extension, sous-espace invariant, idéal premier, idéal primitif

© Canadian Mathematical Society, 2014 :