Expand all Collapse all | Results 1 - 8 of 8 |
1. CJM 2012 (vol 66 pp. 102)
Continuity of convolution of test functions on Lie groups For a Lie group $G$, we show that the map
$C^\infty_c(G)\times C^\infty_c(G)\to C^\infty_c(G)$,
$(\gamma,\eta)\mapsto \gamma*\eta$
taking a pair of
test functions to their convolution is continuous if and only if $G$ is $\sigma$-compact.
More generally, consider $r,s,t
\in \mathbb{N}_0\cup\{\infty\}$ with $t\leq r+s$, locally convex spaces $E_1$, $E_2$
and a continuous bilinear map $b\colon E_1\times E_2\to F$
to a complete locally convex space $F$.
Let $\beta\colon C^r_c(G,E_1)\times C^s_c(G,E_2)\to C^t_c(G,F)$,
$(\gamma,\eta)\mapsto \gamma *_b\eta$ be the associated convolution map.
The main result is a characterization of those $(G,r,s,t,b)$
for which $\beta$ is continuous.
Convolution
of compactly supported continuous functions on a locally compact group
is also discussed, as well as convolution of compactly supported $L^1$-functions
and convolution of compactly supported Radon measures.
Keywords:Lie group, locally compact group, smooth function, compact support, test function, second countability, countable basis, sigma-compactness, convolution, continuity, seminorm, product estimates Categories:22E30, 46F05, 22D15, 42A85, 43A10, 43A15, 46A03, 46A13, 46E25 |
2. CJM 2010 (vol 62 pp. 827)
BMO Functions and Carleson Measures with Values in Uniformly Convex Spaces This paper studies the relationship between vector-valued BMO functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbf{T}$, respectively. For $1< q<\infty$ and a Banach space $B$, we prove that there exists a positive constant $c$ such that $$\sup_{z_0\in D}\int_{D}(1-|z|)^{q-1}\|\nabla f(z)\|^q P_{z_0}(z) dA(z) \le c^q\sup_{z_0\in D}\int_{\mathbf{T}}\|f(z)-f(z_0)\|^qP_{z_0}(z) dm(z)$$ holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$-uniformly convex, where $$P_{z_0}(z)=\frac{1-|z_0|^2}{|1-\bar{z_0}z|^2} .$$ The validity of the converse inequality is equivalent to the existence of an equivalent $q$-uniformly smooth norm.
Keywords:BMO, Carleson measures, Lusin type, Lusin cotype, uniformly convex spaces, uniformly smooth spaces Categories:46E40, 42B25, 46B20 |
3. CJM 2009 (vol 62 pp. 242)
A Second Order Smooth Variational Principle on Riemannian Manifolds We establish a second order smooth variational principle valid for functions defined on (possibly infinite-dimensional) Riemannian manifolds which are uniformly locally convex and have a strictly positive injectivity radius and bounded sectional curvature.
Keywords:smooth variational principle, Riemannian manifold Categories:58E30, 49J52, 46T05, 47J30, 58B20 |
4. CJM 2007 (vol 59 pp. 1301)
Strichartz Inequalities for the Wave Equation with the Full Laplacian on the Heisenberg Group We prove dispersive and Strichartz inequalities for the solution of the wave
equation related to the full
Laplacian on the Heisenberg group, by means of Besov spaces defined by a
Littlewood--Paley
decomposition related to the spectral resolution of the full Laplacian.
This requires a careful
analysis due also to the non-homogeneous nature of the full Laplacian.
This result has to be compared to a previous one by Bahouri, G\'erard
and Xu concerning the solution of the wave equation related to
the Kohn Laplacian.
Keywords:nilpotent and solvable Lie groups, smoothness and regularity of solutions of PDEs Categories:22E25, 35B65 |
5. CJM 2006 (vol 58 pp. 64)
Multiplicity Results for Nonlinear Neumann Problems In this paper we study nonlinear elliptic problems of Neumann type driven by the
$p$-Laplac\-ian differential operator. We look for situations guaranteeing the existence
of multiple solutions. First we study problems which are strongly resonant at infinity
at the first (zero) eigenvalue. We prove five multiplicity results, four for problems
with nonsmooth potential and one for problems with a $C^1$-potential. In the last part,
for nonsmooth problems in which the potential eventually exhibits a strict
super-$p$-growth under a symmetry condition, we prove the existence of infinitely
many pairs of nontrivial solutions. Our approach is variational based on the critical
point theory for nonsmooth functionals. Also we present some results concerning the first
two elements of the spectrum of the negative $p$-Laplacian with Neumann boundary condition.
Keywords:Nonsmooth critical point theory, locally Lipschitz function,, Clarke subdifferential, Neumann problem, strong resonance,, second deformation theorem, nonsmooth symmetric mountain pass theorem,, $p$-Laplacian Categories:35J20, 35J60, 35J85 |
6. CJM 2005 (vol 57 pp. 471)
Small Coverings with Smooth Functions under the Covering Property Axiom In the paper we formulate a Covering Property Axiom, \psmP,
which holds in the iterated perfect set model,
and show that it implies the following facts,
of which (a) and (b) are the generalizations
of results of J. Stepr\={a}ns.
\begin{compactenum}[\rm(a)~~]
\item There exists a family $\F$ of less than continuum many $\C^1$
functions from $\real$ to $\real$ such that $\real^2$ is covered
by functions from $\F$, in the sense that for every $\la
x,y\ra\in\real^2$ there exists an $f\in\F$ such that either
$f(x)=y$ or $f(y)=x$.
\item For every Borel function $f\colon\real\to\real$ there exists a
family $\F$ of less than continuum many ``$\C^1$'' functions ({\em
i.e.,} differentiable functions with continuous derivatives, where
derivative can be infinite) whose graphs cover the graph of $f$.
\item For every $n>0$ and
a $D^n$ function $f\colon\real\to\real$ there exists
a family $\F$ of less than continuum many $\C^n$ functions
whose graphs cover the graph of $f$.
\end{compactenum}
We also provide the examples showing that in the above properties
the smoothness conditions are the best possible. Parts (b), (c),
and the examples are closely related to work of
A. Olevski\v{\i}.
Keywords:continuous, smooth, covering Categories:26A24, 03E35 |
7. CJM 2000 (vol 52 pp. 673)
Sums of Two Squares in Short Intervals Let $\calS$ denote the set of integers representable as a sum of two
squares. Since $\calS$ can be described as the unsifted elements of a
sieving process of positive dimension, it is to be expected that
$\calS$ has many properties in common with the set of prime numbers.
In this paper we exhibit ``unexpected irregularities'' in the
distribution of sums of two squares in short intervals, a phenomenon
analogous to that discovered by Maier, over a decade ago, in the
distribution of prime numbers. To be precise, we show that there are
infinitely many short intervals containing considerably more elements
of $\calS$ than expected, and infinitely many intervals containing
considerably fewer than expected.
Keywords:sums of two squares, sieves, short intervals, smooth numbers Categories:11N36, 11N37, 11N25 |
8. CJM 1999 (vol 51 pp. 26)
Separable Reduction and Supporting Properties of FrÃ©chet-Like Normals in Banach Spaces We develop a method of separable reduction for Fr\'{e}chet-like
normals and $\epsilon$-normals to arbitrary sets in general Banach
spaces. This method allows us to reduce certain problems involving
such normals in nonseparable spaces to the separable case. It is
particularly helpful in Asplund spaces where every separable subspace
admits a Fr\'{e}chet smooth renorm. As an applicaton of the separable
reduction method in Asplund spaces, we provide a new direct proof of a
nonconvex extension of the celebrated Bishop-Phelps density theorem.
Moreover, in this way we establish new characterizations of Asplund
spaces in terms of $\epsilon$-normals.
Keywords:nonsmooth analysis, Banach spaces, separable reduction, FrÃ©chet-like normals and subdifferentials, supporting properties, Asplund spaces Categories:49J52, 58C20, 46B20 |