1. CJM Online first
 Andrade, Jaime; Dávila, Nestor; PérezChavela, Ernesto; Vidal, Claudio

Dynamics and regularization of the Kepler problem on surfaces of constant curvature
We classify and analyze the orbits of the Kepler problem on surfaces
of constant curvature (both positive and negative, $\mathbb S^2$ and
$\mathbb H^2$, respectively) as function of the angular momentum and
the energy. Hill's region are characterized and the problem of
timecollision is studied. We also regularize the problem in
Cartesian and intrinsic coordinates, depending on the constant
angular momentum and we describe the orbits of the regularized
vector field. The phase portrait both for $\mathbb S^2$ and $\mathbb H^2$
are pointed out.
Keywords:Kepler problem on surfaces of constant curvature, Hill's region, singularities, regularization, qualitative analysis of ODE Categories:70F16, 70G60 

2. CJM 2015 (vol 68 pp. 463)
 Sadykov, Rustam

The Weak bprinciple: Mumford Conjecture
In this note we introduce and study a new class of maps called
oriented colored broken submersions. This is the simplest class
of maps that satisfies a version of the bprinciple and in dimension
$2$ approximates the class of oriented submersions well in the
sense that
every oriented colored broken submersion of dimension $2$ to
a closed simply connected manifold is bordant to a submersion.
We show that the MadsenWeiss theorem (the standard Mumford Conjecture)
fits a general setting of the bprinciple. Namely, a version
of the bprinciple for
oriented colored broken submersions together with the Harer
stability theorem and MillerMorita theorem implies the MadsenWeiss
theorem.
Keywords:generalized cohomology theories, fold singularities, hprinciple, infinite loop spaces Categories:55N20, 53C23 

3. CJM 2010 (vol 62 pp. 1293)
 Kasprzyk, Alexander M.

Canonical Toric Fano Threefolds
An inductive approach to classifying all toric Fano varieties is
given. As an application of this technique, we present a
classification of the toric Fano threefolds with at worst canonical
singularities. Up to isomorphism, there are $674,\!688$ such
varieties.
Keywords:toric, Fano, threefold, canonical singularities, convex polytopes Categories:14J30, 14J30, 14M25, 52B20 

4. CJM 2007 (vol 59 pp. 742)
 Gil, Juan B.; Krainer, Thomas; Mendoza, Gerardo A.

Geometry and Spectra of Closed Extensions of Elliptic Cone Operators
We study the geometry of the set of closed extensions of index $0$ of
an elliptic differential cone operator and its model operator in
connection with the spectra of the extensions, and we give a necessary
and sufficient condition for the existence of rays of minimal growth
for such operators.
Keywords:resolvents, manifolds with conical singularities, spectral theor, boundary value problems, Grassmannians Categories:58J50, 35J70, 14M15 

5. CJM 2005 (vol 57 pp. 771)
 Schrohe, E.; Seiler, J.

The Resolvent of Closed Extensions of Cone Differential Operators
We study closed extensions $\underline A$ of
an elliptic differential operator $A$ on a manifold with conical
singularities, acting as an unbounded operator on a weighted $L_p$space.
Under suitable conditions we show that the resolvent
$(\lambda\underline A)^{1}$ exists
in a sector of the complex plane and decays like $1/\lambda$ as
$\lambda\to\infty$. Moreover, we determine the structure of the resolvent
with enough precision to guarantee existence and boundedness of imaginary
powers of $\underline A$.
As an application we treat the LaplaceBeltrami operator for a metric with
straight conical degeneracy and describe domains yielding
maximal regularity for the Cauchy problem $\dot{u}\Delta u=f$, $u(0)=0$.
Keywords:Manifolds with conical singularities, resolvent, maximal regularity Categories:35J70, 47A10, 58J40 
