CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword singular values

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2003 (vol 55 pp. 1000)

Graczyk, P.; Sawyer, P.
Some Convexity Results for the Cartan Decomposition
In this paper, we consider the set $\mathcal{S} = a(e^X K e^Y)$ where $a(g)$ is the abelian part in the Cartan decomposition of $g$. This is exactly the support of the measure intervening in the product formula for the spherical functions on symmetric spaces of noncompact type. We give a simple description of that support in the case of $\SL(3,\mathbf{F})$ where $\mathbf{F} = \mathbf{R}$, $\mathbf{C}$ or $\mathbf{H}$. In particular, we show that $\mathcal{S}$ is convex. We also give an application of our result to the description of singular values of a product of two arbitrary matrices with prescribed singular values.

Keywords:convexity theorems, Cartan decomposition, spherical functions, product formula, semisimple Lie groups, singular values
Categories:43A90, 53C35, 15A18

2. CJM 2002 (vol 54 pp. 571)

Li, Chi-Kwong; Poon, Yiu-Tung
Diagonals and Partial Diagonals of Sum of Matrices
Given a matrix $A$, let $\mathcal{O}(A)$ denote the orbit of $A$ under a certain group action such as \begin{enumerate}[(4)] \item[(1)] $U(m) \otimes U(n)$ acting on $m \times n$ complex matrices $A$ by $(U,V)*A = UAV^t$, \item[(2)] $O(m) \otimes O(n)$ or $\SO(m) \otimes \SO(n)$ acting on $m \times n$ real matrices $A$ by $(U,V)*A = UAV^t$, \item[(3)] $U(n)$ acting on $n \times n$ complex symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$, \item[(4)] $O(n)$ or $\SO(n)$ acting on $n \times n$ real symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$. \end{enumerate} Denote by $$ \mathcal{O}(A_1,\dots,A_k) = \{X_1 + \cdots + X_k : X_i \in \mathcal{O}(A_i), i = 1,\dots,k\} $$ the joint orbit of the matrices $A_1,\dots,A_k$. We study the set of diagonals or partial diagonals of matrices in $\mathcal{O}(A_1,\dots,A_k)$, {\it i.e.}, the set of vectors $(d_1,\dots,d_r)$ whose entries lie in the $(1,j_1),\dots,(r,j_r)$ positions of a matrix in $\mathcal{O}(A_1, \dots,A_k)$ for some distinct column indices $j_1,\dots,j_r$. In many cases, complete description of these sets is given in terms of the inequalities involving the singular values of $A_1,\dots,A_k$. We also characterize those extreme matrices for which the equality cases hold. Furthermore, some convexity properties of the joint orbits are considered. These extend many classical results on matrix inequalities, and answer some questions by Miranda. Related results on the joint orbit $\mathcal{O}(A_1,\dots,A_k)$ of complex Hermitian matrices under the action of unitary similarities are also discussed.

Keywords:orbit, group actions, unitary, orthogonal, Hermitian, (skew-)symmetric matrices, diagonal, singular values
Categories:15A42, 15A18

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/