Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword sets

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM 2012 (vol 65 pp. 349)

Müller, Peter; Richard, Christoph
Ergodic Properties of Randomly Coloured Point Sets
We provide a framework for studying randomly coloured point sets in a locally compact, second-countable space on which a metrisable unimodular group acts continuously and properly. We first construct and describe an appropriate dynamical system for uniformly discrete uncoloured point sets. For point sets of finite local complexity, we characterise ergodicity geometrically in terms of pattern frequencies. The general framework allows to incorporate a random colouring of the point sets. We derive an ergodic theorem for randomly coloured point sets with finite-range dependencies. Special attention is paid to the exclusion of exceptional instances for uniquely ergodic systems. The setup allows for a straightforward application to randomly coloured graphs.

Keywords:Delone sets, dynamical systems
Categories:37B50, 37A30

2. CJM 2011 (vol 65 pp. 149)

Kellendonk, Johannes; Lenz, Daniel
Equicontinuous Delone Dynamical Systems
We characterize equicontinuous Delone dynamical systems as those coming from Delone sets with strongly almost periodic Dirac combs. Within the class of systems with finite local complexity, the only equicontinuous systems are then shown to be the crystallographic ones. On the other hand, within the class without finite local complexity, we exhibit examples of equicontinuous minimal Delone dynamical systems that are not crystallographic. Our results solve the problem posed by Lagarias as to whether a Delone set whose Dirac comb is strongly almost periodic must be crystallographic.

Keywords:Delone sets, tilings, diffraction, topological dynamical systems, almost periodic systems

3. CJM 2010 (vol 63 pp. 123)

Granirer, Edmond E.
Strong and Extremely Strong Ditkin sets for the Banach Algebras $A_p^r(G)=A_p\cap L^r(G)$
Let $A_p(G)$ be the Figa-Talamanca, Herz Banach Algebra on $G$; thus $A_2(G)$ is the Fourier algebra. Strong Ditkin (SD) and Extremely Strong Ditkin (ESD) sets for the Banach algebras $A_p^r(G)$ are investigated for abelian and nonabelian locally compact groups $G$. It is shown that SD and ESD sets for $A_p(G)$ remain SD and ESD sets for $A_p^r(G)$, with strict inclusion for ESD sets. The case for the strict inclusion of SD sets is left open. A result on the weak sequential completeness of $A_2(F)$ for ESD sets $F$ is proved and used to show that Varopoulos, Helson, and Sidon sets are not ESD sets for $A_2(G)$, yet they are such for $A_2^r(G)$ for discrete groups $G$, for any $1\le r\le 2$. A result is given on the equivalence of the sequential and the net definitions of SD or ESD sets for $\sigma$-compact groups. The above results are new even if $G$ is abelian.

Keywords:Fourier algebra, Figa-Talamanca-Herz algebra, locally compact group, Ditkin sets, Helson sets, Sidon sets, weak sequential completeness
Categories:43A15, 43A10, 46J10, 43A45

4. CJM 2008 (vol 60 pp. 658)

Mihailescu, Eugen; Urba\'nski, Mariusz
Inverse Pressure Estimates and the Independence of Stable Dimension for Non-Invertible Maps
We study the case of an Axiom A holomorphic non-degenerate (hence non-invertible) map $f\from\mathbb P^2 \mathbb C \to \mathbb P^2 \mathbb C$, where $\mathbb P^2 \mathbb C$ stands for the complex projective space of dimension 2. Let $\Lambda$ denote a basic set for $f$ of unstable index 1, and $x$ an arbitrary point of $\Lambda$; we denote by $\delta^s(x)$ the Hausdorff dimension of $W^s_r(x) \cap \Lambda$, where $r$ is some fixed positive number and $W^s_r(x)$ is the local stable manifold at $x$ of size $r$; $\delta^s(x)$ is called \emph{the stable dimension at} $x$. Mihailescu and Urba\'nski introduced a notion of inverse topological pressure, denoted by $P^-$, which takes into consideration preimages of points. Manning and McCluskey study the case of hyperbolic diffeomorphisms on real surfaces and give formulas for Hausdorff dimension. Our non-invertible situation is different here since the local unstable manifolds are not uniquely determined by their base point, instead they depend in general on whole prehistories of the base points. Hence our methods are different and are based on using a sequence of inverse pressures for the iterates of $f$, in order to give upper and lower estimates of the stable dimension. We obtain an estimate of the oscillation of the stable dimension on $\Lambda$. When each point $x$ from $\Lambda$ has the same number $d'$ of preimages in $\Lambda$, then we show that $\delta^s(x)$ is independent of $x$; in fact $\delta^s(x)$ is shown to be equal in this case with the unique zero of the map $t \to P(t\phi^s - \log d')$. We also prove the Lipschitz continuity of the stable vector spaces over $\Lambda$; this proof is again different than the one for diffeomorphisms (however, the unstable distribution is not always Lipschitz for conformal non-invertible maps). In the end we include the corresponding results for a real conformal setting.

Keywords:Hausdorff dimension, stable manifolds, basic sets, inverse topological pressure
Categories:37D20, 37A35, 37F35

5. CJM 2005 (vol 57 pp. 961)

Borwein, Jonathan M.; Wang, Xianfu
Cone-Monotone Functions: Differentiability and Continuity
We provide a porosity-based approach to the differentiability and continuity of real-valued functions on separable Banach spaces, when the function is monotone with respect to an ordering induced by a convex cone $K$ with non-empty interior. We also show that the set of nowhere $K$-monotone functions has a $\sigma$-porous complement in the space of continuous functions endowed with the uniform metric.

Keywords:Cone-monotone functions, Aronszajn null set, directionally porous, sets, Gâteaux differentiability, separable space
Categories:26B05, 58C20

6. CJM 2002 (vol 54 pp. 945)

Boivin, André; Gauthier, Paul M.; Paramonov, Petr V.
Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications
Given a homogeneous elliptic partial differential operator $L$ with constant complex coefficients and a class of functions (jet-distributions) which are defined on a (relatively) closed subset of a domain $\Omega$ in $\mathbf{R}^n$ and which belong locally to a Banach space $V$, we consider the problem of approximating in the norm of $V$ the functions in this class by ``analytic'' and ``meromorphic'' solutions of the equation $Lu=0$. We establish new Roth, Arakelyan (including tangential) and Carleman type theorems for a large class of Banach spaces $V$ and operators $L$. Important applications to boundary value problems of solutions of homogeneous elliptic partial differential equations are obtained, including the solution of a generalized Dirichlet problem.

Keywords:approximation on closed sets, elliptic operator, strongly elliptic operator, $L$-meromorphic and $L$-analytic functions, localization operator, Banach space of distributions, Dirichlet problem
Categories:30D40, 30E10, 31B35, 35Jxx, 35J67, 41A30

7. CJM 2002 (vol 54 pp. 417)

Wooley, Trevor D.
Slim Exceptional Sets for Sums of Cubes
We investigate exceptional sets associated with various additive problems involving sums of cubes. By developing a method wherein an exponential sum over the set of exceptions is employed explicitly within the Hardy-Littlewood method, we are better able to exploit excess variables. By way of illustration, we show that the number of odd integers not divisible by $9$, and not exceeding $X$, that fail to have a representation as the sum of $7$ cubes of prime numbers, is $O(X^{23/36+\eps})$. For sums of eight cubes of prime numbers, the corresponding number of exceptional integers is $O(X^{11/36+\eps})$.

Keywords:Waring's problem, exceptional sets
Categories:11P32, 11P05, 11P55

8. CJM 2001 (vol 53 pp. 715)

Cushman, Richard; Śniatycki, Jędrzej
Differential Structure of Orbit Spaces
We present a new approach to singular reduction of Hamiltonian systems with symmetries. The tools we use are the category of differential spaces of Sikorski and the Stefan-Sussmann theorem. The former is applied to analyze the differential structure of the spaces involved and the latter is used to prove that some of these spaces are smooth manifolds. Our main result is the identification of accessible sets of the generalized distribution spanned by the Hamiltonian vector fields of invariant functions with singular reduced spaces. We are also able to describe the differential structure of a singular reduced space corresponding to a coadjoint orbit which need not be locally closed.

Keywords:accessible sets, differential space, Poisson algebra, proper action, singular reduction, symplectic manifolds
Categories:37J15, 58A40, 58D19, 70H33

© Canadian Mathematical Society, 2014 :