1. CJM Online first
 Di Nasso, Mauro; Goldbring, Isaac; Jin, Renling; Leth, Steven; Lupini, Martino; Mahlburg, Karl

On a sumset conjecture of ErdÅs
ErdÅs conjectured that for any set $A\subseteq \mathbb{N}$
with positive
lower asymptotic density, there are infinite sets $B,C\subseteq
\mathbb{N}$
such that $B+C\subseteq A$. We verify ErdÅs' conjecture in
the case that $A$ has Banach density exceeding $\frac{1}{2}$.
As a consequence, we prove that, for $A\subseteq \mathbb{N}$
with
positive Banach density (a much weaker assumption than positive
lower density), we can find infinite $B,C\subseteq \mathbb{N}$
such
that $B+C$ is contained in the union of $A$ and a translate of
$A$. Both of the aforementioned
results are generalized to arbitrary countable
amenable groups. We also provide a positive solution to ErdÅs'
conjecture for subsets of the natural numbers that are pseudorandom.
Keywords:sumsets of integers, asymptotic density, amenable groups, nonstandard analysis Categories:11B05, 11B13, 11P70, 28D15, 37A45 

2. CJM 2012 (vol 65 pp. 349)
 Müller, Peter; Richard, Christoph

Ergodic Properties of Randomly Coloured Point Sets
We provide a framework for studying randomly coloured point sets in a
locally compact, secondcountable space on which a
metrisable unimodular group acts continuously and properly.
We first construct and describe an
appropriate dynamical system for uniformly discrete uncoloured point sets. For
point sets of finite local complexity, we
characterise ergodicity geometrically in terms of pattern frequencies.
The general framework allows to incorporate a random
colouring of the point sets. We derive an ergodic theorem for randomly
coloured point sets with finiterange dependencies.
Special attention is paid to the exclusion of exceptional instances for uniquely ergodic
systems. The setup allows for a straightforward application to randomly
coloured graphs.
Keywords:Delone sets, dynamical systems Categories:37B50, 37A30 

3. CJM 2011 (vol 65 pp. 149)
 Kellendonk, Johannes; Lenz, Daniel

Equicontinuous Delone Dynamical Systems
We characterize equicontinuous Delone dynamical systems as those
coming from Delone sets with strongly almost periodic Dirac combs.
Within the class of systems with finite local complexity, the only
equicontinuous systems are then shown to be the crystallographic
ones. On the other hand, within the class without finite local
complexity, we exhibit examples of equicontinuous minimal Delone
dynamical systems that are not crystallographic.
Our results solve the problem posed by Lagarias as to whether a Delone
set whose Dirac comb is strongly almost periodic must be
crystallographic.
Keywords:Delone sets, tilings, diffraction, topological dynamical systems, almost periodic systems Category:37B50 

4. CJM 2010 (vol 63 pp. 123)
 Granirer, Edmond E.

Strong and Extremely Strong Ditkin sets for the Banach Algebras $A_p^r(G)=A_p\cap L^r(G)$
Let $A_p(G)$ be the FigaTalamanca,
Herz Banach Algebra on $G$; thus $A_2(G)$
is the Fourier algebra. Strong Ditkin (SD) and
Extremely Strong Ditkin (ESD) sets for the Banach algebras
$A_p^r(G)$ are investigated for abelian and nonabelian
locally compact groups $G$. It is shown that SD and ESD sets
for $A_p(G)$ remain SD and ESD sets for $A_p^r(G)$,
with strict inclusion for ESD sets. The case for the strict
inclusion of SD sets is left open.
A result on the weak sequential completeness of $A_2(F)$
for ESD sets $F$ is proved and used to show that Varopoulos,
Helson, and Sidon sets are not ESD sets for $A_2(G)$, yet they
are such for $A_2^r(G)$ for discrete groups $G$, for
any $1\le r\le 2$.
A result is given on the equivalence of the sequential and the net
definitions of SD or ESD sets for $\sigma$compact groups.
The above results are new even if $G$ is abelian.
Keywords:Fourier algebra, FigaTalamancaHerz algebra, locally compact group, Ditkin sets, Helson sets, Sidon sets, weak sequential completeness Categories:43A15, 43A10, 46J10, 43A45 

5. CJM 2008 (vol 60 pp. 658)
 Mihailescu, Eugen; Urba\'nski, Mariusz

Inverse Pressure Estimates and the Independence of Stable Dimension for NonInvertible Maps
We study the case of an Axiom A holomorphic nondegenerate
(hence noninvertible) map $f\from\mathbb P^2
\mathbb C \to \mathbb P^2 \mathbb C$, where $\mathbb P^2 \mathbb C$
stands for the complex
projective space of dimension 2. Let $\Lambda$ denote a basic set for
$f$ of unstable index 1, and $x$ an arbitrary point of $\Lambda$; we
denote by $\delta^s(x)$ the Hausdorff dimension of $W^s_r(x) \cap
\Lambda$, where $r$ is some fixed positive number and $W^s_r(x)$ is
the local stable manifold at $x$ of size $r$; $\delta^s(x)$ is called
\emph{the stable dimension at} $x$. Mihailescu and
Urba\'nski introduced a notion of inverse topological pressure,
denoted by $P^$, which takes into consideration preimages of points.
Manning and McCluskey study the case of hyperbolic diffeomorphisms on
real surfaces and give formulas for Hausdorff dimension. Our
noninvertible situation is different here since the local unstable
manifolds are not uniquely determined by their base point, instead
they depend in general on whole prehistories of the base points. Hence
our methods are different and are based on using a sequence of inverse
pressures for the iterates of $f$, in order to give upper and lower
estimates of the stable dimension. We obtain an estimate of the
oscillation of the stable dimension on $\Lambda$. When each point $x$
from $\Lambda$ has the same number $d'$ of preimages in $\Lambda$,
then we show that $\delta^s(x)$ is independent
of $x$; in fact $\delta^s(x)$ is shown to be equal in this case with
the unique zero of the map $t \to P(t\phi^s  \log d')$. We also
prove the Lipschitz continuity of the stable vector spaces over
$\Lambda$; this proof is again different than the one for
diffeomorphisms (however, the unstable distribution is not always
Lipschitz for conformal noninvertible maps). In the end we include
the corresponding results for a real conformal setting.
Keywords:Hausdorff dimension, stable manifolds, basic sets, inverse topological pressure Categories:37D20, 37A35, 37F35 

6. CJM 2005 (vol 57 pp. 961)
 Borwein, Jonathan M.; Wang, Xianfu

ConeMonotone Functions: Differentiability and Continuity
We provide a porositybased approach to the differentiability and
continuity of realvalued functions on separable Banach spaces,
when the function is monotone with respect to an ordering induced
by a convex cone $K$ with nonempty interior. We also show that
the set of nowhere $K$monotone functions has a $\sigma$porous
complement in the space of continuous functions endowed with the
uniform metric.
Keywords:Conemonotone functions, Aronszajn null set, directionally porous, sets, GÃ¢teaux differentiability, separable space Categories:26B05, 58C20 

7. CJM 2002 (vol 54 pp. 945)
 Boivin, André; Gauthier, Paul M.; Paramonov, Petr V.

Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications
Given a homogeneous elliptic partial differential operator $L$ with constant
complex coefficients and a class of functions (jetdistributions) which
are defined on a (relatively) closed subset of a domain $\Omega$ in $\mathbf{R}^n$ and
which belong locally to a Banach space $V$, we consider the problem of
approximating in the norm of $V$ the functions in this class by ``analytic''
and ``meromorphic'' solutions of the equation $Lu=0$. We establish new Roth,
Arakelyan (including tangential) and Carleman type theorems for a large class
of Banach spaces $V$ and operators $L$. Important applications to boundary
value problems of solutions of homogeneous elliptic partial differential
equations are obtained, including the solution of a generalized Dirichlet
problem.
Keywords:approximation on closed sets, elliptic operator, strongly elliptic operator, $L$meromorphic and $L$analytic functions, localization operator, Banach space of distributions, Dirichlet problem Categories:30D40, 30E10, 31B35, 35Jxx, 35J67, 41A30 

8. CJM 2002 (vol 54 pp. 417)
 Wooley, Trevor D.

Slim Exceptional Sets for Sums of Cubes
We investigate exceptional sets associated with various additive
problems involving sums of cubes. By developing a method wherein an
exponential sum over the set of exceptions is employed explicitly
within the HardyLittlewood method, we are better able to exploit
excess variables. By way of illustration, we show that the number of
odd integers not divisible by $9$, and not exceeding $X$, that fail to
have a representation as the sum of $7$ cubes of prime numbers, is
$O(X^{23/36+\eps})$. For sums of eight cubes of prime numbers, the
corresponding number of exceptional integers is $O(X^{11/36+\eps})$.
Keywords:Waring's problem, exceptional sets Categories:11P32, 11P05, 11P55 

9. CJM 2001 (vol 53 pp. 715)
 Cushman, Richard; Śniatycki, Jędrzej

Differential Structure of Orbit Spaces
We present a new approach to singular reduction of Hamiltonian systems
with symmetries. The tools we use are the category of differential
spaces of Sikorski and the StefanSussmann theorem. The former is
applied to analyze the differential structure of the spaces involved
and the latter is used to prove that some of these spaces are smooth
manifolds.
Our main result is the identification of accessible sets of the
generalized distribution spanned by the Hamiltonian vector fields of
invariant functions with singular reduced spaces. We are also able
to describe the differential structure of a singular reduced space
corresponding to a coadjoint orbit which need not be locally closed.
Keywords:accessible sets, differential space, Poisson algebra, proper action, singular reduction, symplectic manifolds Categories:37J15, 58A40, 58D19, 70H33 
