CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword schemes

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2011 (vol 63 pp. 1058)

Easton, Robert W.
$S_3$-covers of Schemes
We analyze flat $S_3$-covers of schemes, attempting to create structures parallel to those found in the abelian and triple cover theories. We use an initial local analysis as a guide in finding a global description.

Keywords:nonabelian groups, permutation group, group covers, schemes
Category:14L30

2. CJM 2003 (vol 55 pp. 693)

Borne, Niels
Une formule de Riemann-Roch équivariante pour les courbes
Soit $G$ un groupe fini agissant sur une courbe alg\'ebrique projective et lisse $X$ sur un corps alg\'ebriquement clos $k$. Dans cet article, on donne une formule de Riemann-Roch pour la caract\'eristique d'Euler \'equivariante d'un $G$-faisceau inversible $\mathcal{L}$, \`a valeurs dans l'anneau $R_k (G)$ des caract\`eres du groupe $G$. La formule donn\'ee a un bon comportement fonctoriel en ce sens qu'elle rel\`eve la formule classique le long du morphisme $\dim \colon R_k (G) \to \mathbb{Z}$, et est valable m\^eme pour une action sauvage. En guise d'application, on montre comment calculer explicitement le caract\`ere de l'espace des sections globales d'une large classe de $G$-faisceaux inversibles, en s'attardant sur le cas particulier d\'elicat du faisceau des diff\'erentielles sur la courbe.

Keywords:group actions on varieties or schemes,, Riemann-Roch theorems
Categories:14L30, 14C40

3. CJM 2002 (vol 54 pp. 1319)

Yekutieli, Amnon
The Continuous Hochschild Cochain Complex of a Scheme
Let $X$ be a separated finite type scheme over a noetherian base ring $\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$ of topological $\mathcal{O}_X$-modules, called the complete Hochschild chain complex of $X$. To any $\mathcal{O}_X$-module $\mathcal{M}$---not necessarily quasi-coherent---we assign the complex $\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous Hochschild cochains with values in $\mathcal{M}$. Our first main result is that when $X$ is smooth over $\mathbb{K}$ there is a functorial isomorphism $$ \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R \mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) $$ in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where $X^2 := X \times_{\mathbb{K}} X$. The second main result is that if $X$ is smooth of relative dimension $n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps $\pi \colon \widehat{\mathcal{C}}^{-q} (X) \to \Omega^q_{X/ \mathbb{K}}$ induce a quasi-isomorphism $$ \mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/ \mathbb{K}} [q], \mathcal{M} \Bigr) \to \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr). $$ When $\mathcal{M} = \mathcal{O}_X$ this is the quasi-isomorphism underlying the Kontsevich Formality Theorem. Combining the two results above we deduce a decomposition of the global Hochschild cohomology $$ \Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong \bigoplus_q \H^{i-q} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X} \mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M} \Bigr), $$ where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.

Keywords:Hochschild cohomology, schemes, derived categories
Categories:16E40, 14F10, 18G10, 13H10

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/