CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword resistance

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2011 (vol 64 pp. 1058)

Plakhov, Alexander
Optimal Roughening of Convex Bodies
A body moves in a rarefied medium composed of point particles at rest. The particles make elastic reflections when colliding with the body surface, and do not interact with each other. We consider a generalization of Newton's minimal resistance problem: given two bounded convex bodies $C_1$ and $C_2$ such that $C_1 \subset C_2 \subset \mathbb{R}^3$ and $\partial C_1 \cap \partial C_2 = \emptyset$, minimize the resistance in the class of connected bodies $B$ such that $C_1 \subset B \subset C_2$. We prove that the infimum of resistance is zero; that is, there exist "almost perfectly streamlined" bodies.

Keywords:billiards, shape optimization, problems of minimal resistance, Newtonian aerodynamics, rough surface
Categories:37D50, 49Q10

2. CJM 2008 (vol 60 pp. 457)

Teplyaev, Alexander
Harmonic Coordinates on Fractals with Finitely Ramified Cell Structure
We define sets with finitely ramified cell structure, which are generalizations of post-crit8cally finite self-similar sets introduced by Kigami and of fractafolds introduced by Strichartz. In general, we do not assume even local self-similarity, and allow countably many cells connected at each junction point. In particular, we consider post-critically infinite fractals. We prove that if Kigami's resistance form satisfies certain assumptions, then there exists a weak Riemannian metric such that the energy can be expressed as the integral of the norm squared of a weak gradient with respect to an energy measure. Furthermore, we prove that if such a set can be homeomorphically represented in harmonic coordinates, then for smooth functions the weak gradient can be replaced by the usual gradient. We also prove a simple formula for the energy measure Laplacian in harmonic coordinates.

Keywords:fractals, self-similarity, energy, resistance, Dirichlet forms, diffusions, quantum graphs, generalized Riemannian metric
Categories:28A80, 31C25, 53B99, 58J65, 60J60, 60G18

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/