Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword representations

  Expand all        Collapse all Results 1 - 16 of 16

1. CJM Online first

Kamgarpour, Masoud
On the notion of conductor in the local geometric Langlands correspondence
Under the local Langlands correspondence, the conductor of an irreducible representation of $\operatorname{Gl}_n(F)$ is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.

Keywords:local geometric Langlands, connections, cyclic vectors, opers, conductors, Segal-Sugawara operators, Chervov-Molev operators, critical level, smooth representations, affine Kac-Moody algebra, categorical representations
Categories:17B67, 17B69, 22E50, 20G25

2. CJM Online first

Sugiyama, Shingo; Tsuzuki, Masao
Existence of Hilbert cusp forms with non-vanishing $L$-values
We develop a derivative version of the relative trace formula on $\operatorname{PGL}(2)$ studied in our previous work, and derive an asymptotic formula of an average of central values (derivatives) of automorphic $L$-functions for Hilbert cusp forms. As an application, we prove the existence of Hilbert cusp forms with non-vanishing central values (derivatives) such that the absolute degrees of their Hecke fields are arbitrarily large.

Keywords:automorphic representations, relative trace formulas, central $L$-values, derivatives of $L$-functions
Categories:11F67, 11F72

3. CJM 2016 (vol 68 pp. 395)

Garibaldi, Skip; Nakano, Daniel K.
Bilinear and Quadratic Forms on Rational Modules of Split Reductive Groups
The representation theory of semisimple algebraic groups over the complex numbers (equivalently, semisimple complex Lie algebras or Lie groups, or real compact Lie groups) and the question of whether a given complex representation is symplectic or orthogonal has been solved since at least the 1950s. Similar results for Weyl modules of split reductive groups over fields of characteristic different from 2 hold by using similar proofs. This paper considers analogues of these results for simple, induced and tilting modules of split reductive groups over fields of prime characteristic as well as a complete answer for Weyl modules over fields of characteristic 2.

Keywords:orthogonal representations, symmetric tensors, alternating forms, characteristic 2, split reductive groups
Categories:20G05, 11E39, 11E88, 15A63, 20G15

4. CJM 2015 (vol 68 pp. 179)

Takeda, Shuichiro
Metaplectic Tensor Products for Automorphic Representation of $\widetilde{GL}(r)$
Let $M=\operatorname{GL}_{r_1}\times\cdots\times\operatorname{GL}_{r_k}\subseteq\operatorname{GL}_r$ be a Levi subgroup of $\operatorname{GL}_r$, where $r=r_1+\cdots+r_k$, and $\widetilde{M}$ its metaplectic preimage in the $n$-fold metaplectic cover $\widetilde{\operatorname{GL}}_r$ of $\operatorname{GL}_r$. For automorphic representations $\pi_1,\dots,\pi_k$ of $\widetilde{\operatorname{GL}}_{r_1}(\mathbb{A}),\dots,\widetilde{\operatorname{GL}}_{r_k}(\mathbb{A})$, we construct (under a certain technical assumption, which is always satisfied when $n=2$) an automorphic representation $\pi$ of $\widetilde{M}(\mathbb{A})$ which can be considered as the ``tensor product'' of the representations $\pi_1,\dots,\pi_k$. This is the global analogue of the metaplectic tensor product defined by P. Mezo in the sense that locally at each place $v$, $\pi_v$ is equivalent to the local metaplectic tensor product of $\pi_{1,v},\dots,\pi_{k,v}$ defined by Mezo. Then we show that if all of $\pi_i$ are cuspidal (resp. square-integrable modulo center), then the metaplectic tensor product is cuspidal (resp. square-integrable modulo center). We also show that (both locally and globally) the metaplectic tensor product behaves in the expected way under the action of a Weyl group element, and show the compatibility with parabolic inductions.

Keywords:automorphic forms, representations of covering groups

5. CJM 2014 (vol 67 pp. 315)

Bellaïche, Joël
Unitary Eigenvarieties at Isobaric Points
In this article we study the geometry of the eigenvarieties of unitary groups at points corresponding to tempered non-stable representations with an anti-ordinary (a.k.a evil) refinement. We prove that, except in the case the Galois representation attached to the automorphic form is a sum of characters, the eigenvariety is non-smooth at such a point, and that (under some additional hypotheses) its tangent space is big enough to account for all the relevant Selmer group. We also study the local reducibility locus at those points, proving that in general, in contrast with the case of the eigencurve, it is a proper subscheme of the fiber of the eigenvariety over the weight space.

Keywords:eigenvarieties, Galois representations, Selmer groups

6. CJM 2013 (vol 66 pp. 1250)

Feigin, Evgeny; Finkelberg, Michael; Littelmann, Peter
Symplectic Degenerate Flag Varieties
A simple finite dimensional module $V_\lambda$ of a simple complex algebraic group $G$ is naturally endowed with a filtration induced by the PBW-filtration of $U(\mathrm{Lie}\, G)$. The associated graded space $V_\lambda^a$ is a module for the group $G^a$, which can be roughly described as a semi-direct product of a Borel subgroup of $G$ and a large commutative unipotent group $\mathbb{G}_a^M$. In analogy to the flag variety $\mathcal{F}_\lambda=G.[v_\lambda]\subset \mathbb{P}(V_\lambda)$, we call the closure $\overline{G^a.[v_\lambda]}\subset \mathbb{P}(V_\lambda^a)$ of the $G^a$-orbit through the highest weight line the degenerate flag variety $\mathcal{F}^a_\lambda$. In general this is a singular variety, but we conjecture that it has many nice properties similar to that of Schubert varieties. In this paper we consider the case of $G$ being the symplectic group. The symplectic case is important for the conjecture because it is the first known case where even for fundamental weights $\omega$ the varieties $\mathcal{F}^a_\omega$ differ from $\mathcal{F}_\omega$. We give an explicit construction of the varieties $Sp\mathcal{F}^a_\lambda$ and construct desingularizations, similar to the Bott-Samelson resolutions in the classical case. We prove that $Sp\mathcal{F}^a_\lambda$ are normal locally complete intersections with terminal and rational singularities. We also show that these varieties are Frobenius split. Using the above mentioned results, we prove an analogue of the Borel-Weil theorem and obtain a $q$-character formula for the characters of irreducible $Sp_{2n}$-modules via the Atiyah-Bott-Lefschetz fixed points formula.

Keywords:Lie algebras, flag varieties, symplectic groups, representations
Categories:14M15, 22E46

7. CJM 2013 (vol 66 pp. 1287)

Henniart, Guy; Sécherre, Vincent
Types et contragrédientes
Soit $\mathrm{G}$ un groupe réductif $p$-adique, et soit $\mathrm{R}$ un corps algébriquement clos. Soit $\pi$ une représentation lisse de $\mathrm{G}$ dans un espace vectoriel $\mathrm{V}$ sur $\mathrm{R}$. Fixons un sous-groupe ouvert et compact $\mathrm{K}$ de $\mathrm{G}$ et une représentation lisse irréductible $\tau$ de $\mathrm{K}$ dans un espace vectoriel $\mathrm{W}$ de dimension finie sur $\mathrm{R}$. Sur l'espace $\mathrm{Hom}_{\mathrm{K}(\mathrm{W},\mathrm{V})}$ agit l'algèbre d'entrelacement $\mathscr{H}(\mathrm{G},\mathrm{K},\mathrm{W})$. Nous examinons la compatibilité de ces constructions avec le passage aux représentations contragrédientes $\mathrm{V}^ėe$ et $\mathrm{W}^ėe$, et donnons en particulier des conditions sur $\mathrm{W}$ ou sur la caractéristique de $\mathrm{R}$ pour que le comportement soit semblable au cas des représentations complexes. Nous prenons un point de vue abstrait, n'utilisant que des propriétés générales de $\mathrm{G}$. Nous terminons par une application à la théorie des types pour le groupe $\mathrm{GL}_n$ et ses formes intérieures sur un corps local non archimédien.

Keywords:modular representations of p-adic reductive groups, types, contragredient, intertwining

8. CJM 2013 (vol 66 pp. 1167)

Rotger, Victor; de Vera-Piquero, Carlos
Galois Representations Over Fields of Moduli and Rational Points on Shimura Curves
The purpose of this note is introducing a method for proving the existence of no rational points on a coarse moduli space $X$ of abelian varieties over a given number field $K$, in cases where the moduli problem is not fine and points in $X(K)$ may not be represented by an abelian variety (with additional structure) admitting a model over the field $K$. This is typically the case when the abelian varieties that are being classified have even dimension. The main idea, inspired on the work of Ellenberg and Skinner on the modularity of $\mathbb{Q}$-curves, is that to a point $P=[A]\in X(K)$ represented by an abelian variety $A/\bar K$ one may still attach a Galois representation of $\operatorname{Gal}(\bar K/K)$ with values in the quotient group $\operatorname{GL}(T_\ell(A))/\operatorname{Aut}(A)$, provided $\operatorname{Aut}(A)$ lies in the centre of $\operatorname{GL}(T_\ell(A))$. We exemplify our method in the cases where $X$ is a Shimura curve over an imaginary quadratic field or an Atkin-Lehner quotient over $\mathbb{Q}$.

Keywords:Shimura curves, rational points, Galois representations, Hasse principle, Brauer-Manin obstruction
Categories:11G18, 14G35, 14G05

9. CJM 2012 (vol 66 pp. 3)

Abdesselam, Abdelmalek; Chipalkatti, Jaydeep
On Hilbert Covariants
Let $F$ denote a binary form of order $d$ over the complex numbers. If $r$ is a divisor of $d$, then the Hilbert covariant $\mathcal{H}_{r,d}(F)$ vanishes exactly when $F$ is the perfect power of an order $r$ form. In geometric terms, the coefficients of $\mathcal{H}$ give defining equations for the image variety $X$ of an embedding $\mathbf{P}^r \hookrightarrow \mathbf{P}^d$. In this paper we describe a new construction of the Hilbert covariant; and simultaneously situate it into a wider class of covariants called the Göttingen covariants, all of which vanish on $X$. We prove that the ideal generated by the coefficients of $\mathcal{H}$ defines $X$ as a scheme. Finally, we exhibit a generalisation of the Göttingen covariants to $n$-ary forms using the classical Clebsch transfer principle.

Keywords:binary forms, covariants, $SL_2$-representations
Categories:14L30, 13A50

10. CJM 2011 (vol 63 pp. 1107)

Liu, Baiying
Genericity of Representations of p-Adic $Sp_{2n}$ and Local Langlands Parameters
Let $G$ be the $F$-rational points of the symplectic group $Sp_{2n}$, where $F$ is a non-Archimedean local field of characteristic $0$. Cogdell, Kim, Piatetski-Shapiro, and Shahidi constructed local Langlands functorial lifting from irreducible generic representations of $G$ to irreducible representations of $GL_{2n+1}(F)$. Jiang and Soudry constructed the descent map from irreducible supercuspidal representations of $GL_{2n+1}(F)$ to those of $G$, showing that the local Langlands functorial lifting from the irreducible supercuspidal generic representations is surjective. In this paper, based on above results, using the same descent method of studying $SO_{2n+1}$ as Jiang and Soudry, we will show the rest of local Langlands functorial lifting is also surjective, and for any local Langlands parameter $\phi \in \Phi(G)$, we construct a representation $\sigma$ such that $\phi$ and $\sigma$ have the same twisted local factors. As one application, we prove the $G$-case of a conjecture of Gross-Prasad and Rallis, that is, a local Langlands parameter $\phi \in \Phi(G)$ is generic, i.e., the representation attached to $\phi$ is generic, if and only if the adjoint $L$-function of $\phi$ is holomorphic at $s=1$. As another application, we prove for each Arthur parameter $\psi$, and the corresponding local Langlands parameter $\phi_{\psi}$, the representation attached to $\phi_{\psi}$ is generic if and only if $\phi_{\psi}$ is tempered.

Keywords:generic representations, local Langlands parameters
Categories:22E50, 11S37

11. CJM 2009 (vol 62 pp. 439)

Sundhäll, Marcus; Tchoundja, Edgar
On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by Sundhäll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.

Keywords:Hankel forms, Schatten—von Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, Möbius group
Categories:32A25, 32A35, 32A37, 47B35

12. CJM 2009 (vol 62 pp. 34)

Campbell, Peter S.; Nevins, Monica
Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$-adic Field
We decompose the restriction of ramified principal series representations of the $p$-adic group $\mathrm{GL}(3,\mathrm{k})$ to its maximal compact subgroup $K=\mathrm{GL}(3,R)$. Its decomposition is dependent on the degree of ramification of the inducing characters and can be characterized in terms of filtrations of the Iwahori subgroup in $K$. We establish several irreducibility results and illustrate the decomposition with some examples.

Keywords:principal series representations, branching rules, maximal compact subgroups, representations of $p$-adic groups
Categories:20G25, 20G05

13. CJM 2006 (vol 58 pp. 23)

Dabbaghian-Abdoly, Vahid
Constructing Representations of Finite Simple Groups and Covers
Let $G$ be a finite group and $\chi$ be an irreducible character of $G$. An efficient and simple method to construct representations of finite groups is applicable whenever $G$ has a subgroup $H$ such that $\chi_H$ has a linear constituent with multiplicity $1$. In this paper we show (with a few exceptions) that if $G$ is a simple group or a covering group of a simple group and $\chi$ is an irreducible character of $G$ of degree less than 32, then there exists a subgroup $H$ (often a Sylow subgroup) of $G$ such that $\chi_H$ has a linear constituent with multiplicity $1$.

Keywords:group representations, simple groups, central covers, irreducible representations
Categories:20C40, 20C15

14. CJM 2005 (vol 57 pp. 648)

Nevins, Monica
Branching Rules for Principal Series Representations of $SL(2)$ over a $p$-adic Field
We explicitly describe the decomposition into irreducibles of the restriction of the principal series representations of $SL(2,k)$, for $k$ a $p$-adic field, to each of its two maximal compact subgroups (up to conjugacy). We identify these irreducible subrepresentations in the Kirillov-type classification of Shalika. We go on to explicitly describe the decomposition of the reducible principal series of $SL(2,k)$ in terms of the restrictions of its irreducible constituents to a maximal compact subgroup.

Keywords:representations of $p$-adic groups, $p$-adic integers, orbit method, $K$-types
Categories:20G25, 22E35, 20H25

15. CJM 2000 (vol 52 pp. 1121)

Ballantine, Cristina M.
Ramanujan Type Buildings
We will construct a finite union of finite quotients of the affine building of the group $\GL_3$ over the field of $p$-adic numbers $\mathbb{Q}_p$. We will view this object as a hypergraph and estimate the spectrum of its underlying graph.

Keywords:automorphic representations, buildings

16. CJM 1997 (vol 49 pp. 543)

Ismail, Mourad E. H.; Rahman, Mizan; Suslov, Sergei K.
Some summation theorems and transformations for $q$-series
We introduce a double sum extension of a very well-poised series and extend to this the transformations of Bailey and Sears as well as the ${}_6\f_5$ summation formula of F.~H.~Jackson and the $q$-Dixon sum. We also give $q$-integral representations of the double sum. Generalizations of the Nassrallah-Rahman integral are also found.

Keywords:Basic hypergeometric series, balanced series,, very well-poised series, integral representations,, Al-Salam-Chihara polynomials.
Categories:33D20, 33D60

© Canadian Mathematical Society, 2016 :