CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword regularity

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM 2013 (vol 65 pp. 740)

Bernard, P.; Zavidovique, M.
Regularization of Subsolutions in Discrete Weak KAM Theory
We expose different methods of regularizations of subsolutions in the context of discrete weak KAM theory. They allow to prove the existence and the density of $C^{1,1}$ subsolutions. Moreover, these subsolutions can be made strict and smooth outside of the Aubry set.

Keywords:discrete subsolutions, regularity
Category:49C15

2. CJM 2012 (vol 65 pp. 702)

Taylor, Michael
Regularity of Standing Waves on Lipschitz Domains
We analyze the regularity of standing wave solutions to nonlinear Schrödinger equations of power type on bounded domains, concentrating on Lipschitz domains. We establish optimal regularity results in this setting, in Besov spaces and in Hölder spaces.

Keywords:standing waves, elliptic regularity, Lipschitz domain
Categories:35J25, 35J65

3. CJM 2007 (vol 59 pp. 1207)

Bu, Shangquan; Le, Christian
$H^p$-Maximal Regularity and Operator Valued Multipliers on Hardy Spaces
We consider maximal regularity in the $H^p$ sense for the Cauchy problem $u'(t) + Au(t) = f(t)\ (t\in \R)$, where $A$ is a closed operator on a Banach space $X$ and $f$ is an $X$-valued function defined on $\R$. We prove that if $X$ is an AUMD Banach space, then $A$ satisfies $H^p$-maximal regularity if and only if $A$ is Rademacher sectorial of type $<\frac{\pi}{2}$. Moreover we find an operator $A$ with $H^p$-maximal regularity that does not have the classical $L^p$-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces $H^p(\R;X)$, in the case when $X$ is an AUMD Banach space.

Keywords:$L^p$-maximal regularity, $H^p$-maximal regularity, Rademacher boundedness
Categories:42B30, 47D06

4. CJM 2007 (vol 59 pp. 1301)

Furioli, Giulia; Melzi, Camillo; Veneruso, Alessandro
Strichartz Inequalities for the Wave Equation with the Full Laplacian on the Heisenberg Group
We prove dispersive and Strichartz inequalities for the solution of the wave equation related to the full Laplacian on the Heisenberg group, by means of Besov spaces defined by a Littlewood--Paley decomposition related to the spectral resolution of the full Laplacian. This requires a careful analysis due also to the non-homogeneous nature of the full Laplacian. This result has to be compared to a previous one by Bahouri, G\'erard and Xu concerning the solution of the wave equation related to the Kohn Laplacian.

Keywords:nilpotent and solvable Lie groups, smoothness and regularity of solutions of PDEs
Categories:22E25, 35B65

5. CJM 2005 (vol 57 pp. 771)

Schrohe, E.; Seiler, J.
The Resolvent of Closed Extensions of Cone Differential Operators
We study closed extensions $\underline A$ of an elliptic differential operator $A$ on a manifold with conical singularities, acting as an unbounded operator on a weighted $L_p$-space. Under suitable conditions we show that the resolvent $(\lambda-\underline A)^{-1}$ exists in a sector of the complex plane and decays like $1/|\lambda|$ as $|\lambda|\to\infty$. Moreover, we determine the structure of the resolvent with enough precision to guarantee existence and boundedness of imaginary powers of $\underline A$. As an application we treat the Laplace--Beltrami operator for a metric with straight conical degeneracy and describe domains yielding maximal regularity for the Cauchy problem $\dot{u}-\Delta u=f$, $u(0)=0$.

Keywords:Manifolds with conical singularities, resolvent, maximal regularity
Categories:35J70, 47A10, 58J40

6. CJM 2002 (vol 54 pp. 1121)

Bao, Jiguang
Fully Nonlinear Elliptic Equations on General Domains
By means of the Pucci operator, we construct a function $u_0$, which plays an essential role in our considerations, and give the existence and regularity theorems for the bounded viscosity solutions of the generalized Dirichlet problems of second order fully nonlinear elliptic equations on the general bounded domains, which may be irregular. The approximation method, the accretive operator technique and the Caffarelli's perturbation theory are used.

Keywords:Pucci operator, viscosity solution, existence, $C^{2,\psi}$ regularity, Dini condition, fully nonlinear equation, general domain, accretive operator, approximation lemma
Categories:35D05, 35D10, 35J60, 35J67

© Canadian Mathematical Society, 2014 : https://cms.math.ca/