CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword reduction

  Expand all        Collapse all Results 1 - 9 of 9

1. CJM Online first

Santoprete, Manuele; Scheurle, Jürgen; Walcher, Sebastian
Motion in a Symmetric Potential on the Hyperbolic Plane
We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is the analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.

Keywords:Hamiltonian systems with symmetry, symmetries, non-compact symmetry groups, singular reduction
Categories:37J15, 70H33, 70F99, 37C80, 34C14, , 20G20

2. CJM 2012 (vol 65 pp. 927)

Wang, Liping; Zhao, Chunyi
Infinitely Many Solutions for the Prescribed Boundary Mean Curvature Problem in $\mathbb B^N$
We consider the following prescribed boundary mean curvature problem in $ \mathbb B^N$ with the Euclidean metric: \[ \begin{cases} \displaystyle -\Delta u =0,\quad u\gt 0 &\text{in }\mathbb B^N, \\[2ex] \displaystyle \frac{\partial u}{\partial\nu} + \frac{N-2}{2} u =\frac{N-2}{2} \widetilde K(x) u^{2^\#-1} \quad & \text{on }\mathbb S^{N-1}, \end{cases} \] where $\widetilde K(x)$ is positive and rotationally symmetric on $\mathbb S^{N-1}, 2^\#=\frac{2(N-1)}{N-2}$. We show that if $\widetilde K(x)$ has a local maximum point, then the above problem has infinitely many positive solutions that are not rotationally symmetric on $\mathbb S^{N-1}$.

Keywords:infinitely many solutions, prescribed boundary mean curvature, variational reduction
Categories:35J25, 35J65, 35J67

3. CJM 2012 (vol 65 pp. 553)

Godinho, Leonor; Sousa-Dias, M. E.
Addendum and Erratum to "The Fundamental Group of $S^1$-manifolds"
This paper provides an addendum and erratum to L. Godinho and M. E. Sousa-Dias, "The Fundamental Group of $S^1$-manifolds". Canad. J. Math. 62(2010), no. 5, 1082--1098.

Keywords:symplectic reduction; fundamental group
Categories:53D19, 37J10, 55Q05

4. CJM 2008 (vol 60 pp. 391)

Migliore, Juan C.
The Geometry of the Weak Lefschetz Property and Level Sets of Points
In a recent paper, F. Zanello showed that level Artinian algebras in 3 variables can fail to have the Weak Lefschetz Property (WLP), and can even fail to have unimodal Hilbert function. We show that the same is true for the Artinian reduction of reduced, level sets of points in projective 3-space. Our main goal is to begin an understanding of how the geometry of a set of points can prevent its Artinian reduction from having WLP, which in itself is a very algebraic notion. More precisely, we produce level sets of points whose Artinian reductions have socle types 3 and 4 and arbitrary socle degree $\geq 12$ (in the worst case), but fail to have WLP. We also produce a level set of points whose Artinian reduction fails to have unimodal Hilbert function; our example is based on Zanello's example. Finally, we show that a level set of points can have Artinian reduction that has WLP but fails to have the Strong Lefschetz Property. While our constructions are all based on basic double G-linkage, the implementations use very different methods.

Keywords:Weak Lefschetz Property, Strong Lefschetz Property, basic double G-linkage, level, arithmetically Gorenstein, arithmetically Cohen--Macaulay, socle type, socle degree, Artinian reduction
Categories:13D40, 13D02, 14C20, 13C40, 13C13, 14M05

5. CJM 2007 (vol 59 pp. 109)

Jayanthan, A. V.; Puthenpurakal, Tony J.; Verma, J. K.
On Fiber Cones of $\m$-Primary Ideals
Two formulas for the multiplicity of the fiber cone $F(I)=\bigoplus_{n=0}^{\infty} I^n/\m I^n$ of an $\m$-primary ideal of a $d$-dimensional Cohen--Macaulay local ring $(R,\m)$ are derived in terms of the mixed multiplicity $e_{d-1}(\m | I)$, the multiplicity $e(I)$, and superficial elements. As a consequence, the Cohen--Macaulay property of $F(I)$ when $I$ has minimal mixed multiplicity or almost minimal mixed multiplicity is characterized in terms of the reduction number of $I$ and lengths of certain ideals. We also characterize the Cohen--Macaulay and Gorenstein properties of fiber cones of $\m$-primary ideals with a $d$-generated minimal reduction $J$ satisfying $\ell(I^2/JI)=1$ or $\ell(I\m/J\m)=1.$

Keywords:fiber cones, mixed multiplicities, joint reductions, Cohen--Macaulay fiber cones, Gorenstein fiber cones, ideals having minimal and almost minimal mixed multiplicities
Categories:13H10, 13H15, 13A30, 13C15, 13A02

6. CJM 2004 (vol 56 pp. 638)

Śniatycki, Jędrzej
Multisymplectic Reduction for Proper Actions
We consider symmetries of the Dedonder equation arising from variational problems with partial derivatives. Assuming a proper action of the symmetry group, we identify a set of reduced equations on an open dense subset of the domain of definition of the fields under consideration. By continuity, the Dedonder equation is satisfied whenever the reduced equations are satisfied.

Keywords:Dedonder equation, multisymplectic structure, reduction,, symmetries, variational problems
Categories:58J70, 35A30

7. CJM 2001 (vol 53 pp. 715)

Cushman, Richard; Śniatycki, Jędrzej
Differential Structure of Orbit Spaces
We present a new approach to singular reduction of Hamiltonian systems with symmetries. The tools we use are the category of differential spaces of Sikorski and the Stefan-Sussmann theorem. The former is applied to analyze the differential structure of the spaces involved and the latter is used to prove that some of these spaces are smooth manifolds. Our main result is the identification of accessible sets of the generalized distribution spanned by the Hamiltonian vector fields of invariant functions with singular reduced spaces. We are also able to describe the differential structure of a singular reduced space corresponding to a coadjoint orbit which need not be locally closed.

Keywords:accessible sets, differential space, Poisson algebra, proper action, singular reduction, symplectic manifolds
Categories:37J15, 58A40, 58D19, 70H33

8. CJM 1999 (vol 51 pp. 26)

Fabian, Marián; Mordukhovich, Boris S.
Separable Reduction and Supporting Properties of Fréchet-Like Normals in Banach Spaces
We develop a method of separable reduction for Fr\'{e}chet-like normals and $\epsilon$-normals to arbitrary sets in general Banach spaces. This method allows us to reduce certain problems involving such normals in nonseparable spaces to the separable case. It is particularly helpful in Asplund spaces where every separable subspace admits a Fr\'{e}chet smooth renorm. As an applicaton of the separable reduction method in Asplund spaces, we provide a new direct proof of a nonconvex extension of the celebrated Bishop-Phelps density theorem. Moreover, in this way we establish new characterizations of Asplund spaces in terms of $\epsilon$-normals.

Keywords:nonsmooth analysis, Banach spaces, separable reduction, Fréchet-like normals and subdifferentials, supporting properties, Asplund spaces
Categories:49J52, 58C20, 46B20

9. CJM 1997 (vol 49 pp. 675)

de Cataldo, Mark Andrea A.
Some adjunction-theoretic properties of codimension two non-singular subvarities of quadrics
We make precise the structure of the first two reduction morphisms associated with codimension two non-singular subvarieties of non-singular quadrics $\Q^n$, $n\geq 5$. We give a coarse classification of the same class of subvarieties when they are assumed not to be of log-general-type.}

Keywords:Adjunction Theory, classification, codimension two, conic bundles,, low codimension, non log-general-type, quadric, reduction, special, variety.
Categories:14C05, 14E05, 14E25, 14E30, 14E35, 14J10

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/