Expand all Collapse all | Results 1 - 1 of 1 |
1. CJM 2005 (vol 57 pp. 1178)
Asymptotic Behavior of the Length of Local Cohomology Let $k$ be a field of characteristic 0, $R=k[x_1, \ldots, x_d]$ be a polynomial ring,
and $\mm$ its maximal homogeneous ideal. Let $I \subset R$ be a homogeneous ideal in
$R$. Let $\lambda(M)$ denote the length of an $R$-module $M$. In this paper, we show
that
$$
\lim_{n \to \infty} \frac{\l\bigl(H^0_{\mathfrak{m}}(R/I^n)\bigr)}{n^d}
=\lim_{n \to \infty} \frac{\l\bigl(\Ext^d_R\bigl(R/I^n,R(-d)\bigr)\bigr)}{n^d}
$$
always exists. This limit has been shown to be ${e(I)}/{d!}$ for $m$-primary ideals
$I$ in a local Cohen--Macaulay ring, where $e(I)$ denotes the multiplicity
of $I$. But we find that this limit may not be rational in general. We give an example
for which the limit is an irrational number thereby showing that the lengths of these
extention modules may not have polynomial growth.
Keywords:powers of ideals, local cohomology, Hilbert function, linear growth Categories:13D40, 14B15, 13D45 |