Expand all Collapse all | Results 1 - 25 of 25 |
1. CJM Online first
Representation stability of power sets and square free polynomials The symmetric group $\mathcal{S}_n$ acts on the power
set $\mathcal{P}(n)$ and also on the set of
square free polynomials in $n$ variables. These
two related representations are analyzed from the stability point
of view. An application is given for the action of the symmetric
group on the cohomology of the pure braid group.
Keywords:symmetric group modules, square free polynomials, representation stability, Arnold algebra Categories:20C30, 13A50, 20F36, 55R80 |
2. CJM Online first
On Littlewood Polynomials with Prescribed Number of Zeros Inside the Unit Disk We investigate the numbers of complex zeros of Littlewood polynomials
$p(z)$ (polynomials with coefficients $\{-1, 1\}$) inside or
on the unit circle $|z|=1$, denoted by $N(p)$ and $U(p)$, respectively.
Two types of Littlewood polynomials are considered: Littlewood
polynomials with one sign change in the sequence of coefficients
and Littlewood polynomials with one negative coefficient. We
obtain explicit formulas for $N(p)$, $U(p)$ for polynomials $p(z)$
of these types. We show that, if $n+1$ is a prime number, then
for each integer $k$, $0 \leq k \leq n-1$, there exists a Littlewood
polynomial $p(z)$ of degree $n$ with $N(p)=k$ and $U(p)=0$. Furthermore,
we describe some cases when the ratios $N(p)/n$ and $U(p)/n$
have limits as $n \to \infty$ and find the corresponding limit
values.
Keywords:Littlewood polynomials, zeros, complex roots Categories:11R06, 11R09, 11C08 |
3. CJM 2012 (vol 65 pp. 863)
Cumulants of the $q$-semicircular Law, Tutte Polynomials, and Heaps The $q$-semicircular distribution is a probability law that
interpolates between the Gaussian law and the semicircular law. There
is a combinatorial interpretation of its moments in terms of matchings
where $q$ follows the number of crossings, whereas for the free
cumulants one has to restrict the enumeration to connected matchings.
The purpose of this article is to describe combinatorial properties of
the classical cumulants. We show that like the free cumulants, they
are obtained by an enumeration of connected matchings, the weight
being now an evaluation of the Tutte polynomial of a so-called
crossing graph. The case $q=0$ of these cumulants was studied by
Lassalle using symmetric functions and hypergeometric series. We show
that the underlying combinatorics is explained through the theory of
heaps, which is Viennot's geometric interpretation of the
Cartier-Foata monoid. This method also gives a general formula for
the cumulants in terms of free cumulants.
Keywords:moments, cumulants, matchings, Tutte polynomials, heaps Categories:05A18, 05C31, 46L54 |
4. CJM 2012 (vol 65 pp. 600)
Christoffel Functions and Universality in the Bulk for Multivariate Orthogonal Polynomials We establish asymptotics for Christoffel functions associated with
multivariate orthogonal polynomials. The underlying measures are assumed to
be regular on a suitable domain - in particular this is true if they are
positive a.e. on a compact set that admits analytic parametrization. As a
consequence, we obtain asymptotics for Christoffel functions for measures on
the ball and simplex, under far more general conditions than previously
known. As another consequence, we establish universality type limits in the
bulk in a variety of settings.
Keywords:orthogonal polynomials, random matrices, unitary ensembles, correlation functions, Christoffel functions Categories:42C05, 42C99, 42B05, 60B20 |
5. CJM 2012 (vol 64 pp. 318)
Cubic Polynomials with Periodic Cycles of a Specified Multiplier We consider cubic polynomials $f(z)=z^3+az+b$ defined over
$\mathbb{C}(\lambda)$, with a marked point of period $N$ and multiplier
$\lambda$. In the case $N=1$, there are infinitely many such objects,
and in the case $N\geq 3$, only finitely many (subject to a mild
assumption). The case $N=2$ has particularly rich structure, and we
are able to describe all such cubic polynomials defined over the field
$\bigcup_{n\geq 1}\mathbb{C}(\lambda^{1/n})$.
Keywords:cubic polynomials, periodic points, holomorphic dynamics Category:37P35 |
6. CJM 2010 (vol 63 pp. 200)
An Explicit Polynomial Expression for a $q$-Analogue of the 9-$j$ Symbols Using standard transformation and summation formulas for basic
hypergeometric series we obtain an explicit polynomial form of the
$q$-analogue of the 9-$j$ symbols, introduced by the author in a
recent publication. We also consider a limiting case in which the
9-$j$ symbol factors into two Hahn polynomials. The same
factorization occurs in another limit case of the corresponding
$q$-analogue.
Keywords:6-$j$ and 9-$j$ symbols, $q$-analogues, balanced and very-well-poised basic hypergeometric series, orthonormal polynomials in one and two variables, Racah and $q$-Racah polynomials and their extensions Categories:33D45, 33D50 |
7. CJM 2010 (vol 63 pp. 181)
Characterizations of Continuous and Discrete $q$-Ultraspherical Polynomials
We characterize the continuous $q$-ultraspherical polynomials in
terms of the special form of the coefficients in the expansion
$\mathcal{D}_q P_n(x)$ in the basis $\{P_n(x)\}$, $\mathcal{D}_q$
being the Askey--Wilson divided difference operator. The polynomials
are assumed to be symmetric, and the connection coefficients
are multiples of the reciprocal of the square of the $L^2$ norm of
the polynomials. A similar characterization is given for the discrete
$q$-ultraspherical polynomials. A new proof of the evaluation of
the connection coefficients for big $q$-Jacobi polynomials is given.
Keywords:continuous $q$-ultraspherical polynomials, big $q$-Jacobi polynomials, discrete $q$-ultra\-spherical polynomials, Askey--Wilson operator, $q$-difference operator, recursion coefficients Categories:33D45, 42C05 |
8. CJM 2010 (vol 62 pp. 261)
Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials |
Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials No abstract.
Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine Problem Categories:34M10, 33C15, 33C47 |
9. CJM 2009 (vol 61 pp. 351)
Multiplication of Polynomials on Hermitian Symmetric spaces and Littlewood--Richardson Coefficients Let $K$ be a complex reductive algebraic group and $V$ a
representation of $K$. Let $S$ denote the ring of polynomials on
$V$. Assume that the action of $K$ on $S$ is multiplicity-free. If
$\lambda$ denotes the isomorphism class of an irreducible
representation of $K$, let $\rho_\lambda\from K \rightarrow
GL(V_{\lambda})$ denote the corresponding irreducible representation
and $S_\lambda$ the $\lambda$-isotypic component of $S$. Write
$S_\lambda \cdot S_\mu$ for the subspace of $S$ spanned by products of
$S_\lambda$ and $S_\mu$. If $V_\nu$ occurs as an irreducible
constituent of $V_\lambda\otimes V_\mu$, is it true that
$S_\nu\subseteq S_\lambda\cdot S_\mu$? In this paper, the authors
investigate this question for representations arising in the context
of Hermitian symmetric pairs. It is shown that the answer is yes in
some cases and, using an earlier result of Ruitenburg, that in the
remaining classical cases, the answer is yes provided that a
conjecture of Stanley on the multiplication of Jack polynomials is
true. It is also shown how the conjecture connects multiplication in
the ring $S$ to the usual Littlewood--Richardson rule.
Keywords:Hermitian symmetric spaces, multiplicity free actions, Littlewood--Richardson coefficients, Jack polynomials Categories:14L30, 22E46 |
10. CJM 2008 (vol 60 pp. 685)
Closed and Exact Functions in the Context of Ginzburg--Landau Models For a general vector field we exhibit two Hilbert spaces, namely
the space of so called \emph{closed functions} and the space of \emph{exact functions}
and we calculate the codimension of the space of exact functions
inside the larger space of closed functions.
In particular we provide a new approach for the known cases:
the Glauber field and the second-order Ginzburg--Landau field
and for the case of the fourth-order Ginzburg--Landau field.
Keywords:Hermite polynomials, Fock space, Fourier coefficients, Fourier transform, group of symmetries Categories:42B05, 81Q50, 42A16 |
11. CJM 2007 (vol 59 pp. 1223)
CalderÃ³n--Zygmund Operators Associated to Ultraspherical Expansions We define the higher order Riesz transforms and the Littlewood--Paley
$g$-function
associated to the differential operator $L_\l f(\theta)=-f''(\theta)-2\l\cot\theta
f'(\theta)+\l^2f(\theta)$. We prove that these operators are
Calder\'{o}n--Zygmund operators in the homogeneous type space
$((0,\pi),(\sin t)^{2\l}\,dt)$. Consequently, $L^p$ weighted,
$H^1-L^1$ and $L^\infty-BMO$ inequalities are obtained.
Keywords:ultraspherical polynomials, CalderÃ³n--Zygmund operators Categories:42C05, 42C15frcs |
12. CJM 2006 (vol 58 pp. 726)
On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials |
On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials We show that the value distribution (complex oscillation) of
solutions of certain periodic second order ordinary differential
equations studied by Bank, Laine and Langley is closely
related to confluent hypergeometric functions, Bessel functions
and Bessel polynomials. As a result, we give a complete
characterization of the zero-distribution in the sense of
Nevanlinna theory of the solutions for two classes of the ODEs.
Our approach uses special functions and their asymptotics. New
results concerning finiteness of the number of zeros
(finite-zeros) problem of Bessel and Coulomb wave functions with
respect to the parameters are also obtained as a consequence. We
demonstrate that the problem for the remaining class of ODEs not
covered by the above ``special function approach" can be
described by a classical Heine problem for differential
equations that admit polynomial solutions.
Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine Proble Categories:34M10, 33C15, 33C47 |
13. CJM 2006 (vol 58 pp. 401)
On Pointwise Estimates of Positive Definite Functions With Given Support The following problem has been suggested by Paul Tur\' an. Let
$\Omega$ be a symmetric convex body in the Euclidean space $\mathbb R^d$
or in the torus $\TT^d$. Then, what is the largest possible value
of the integral of positive definite functions that are supported
in $\Omega$ and normalized with the value $1$ at the origin? From
this, Arestov, Berdysheva and Berens arrived at the analogous
pointwise extremal problem for intervals in $\RR$. That is, under
the same conditions and normalizations, the supremum of possible
function values at $z$ is to be found for any given point
$z\in\Omega$. However, it turns out that the problem for the real
line has already been solved by Boas and Kac, who gave several
proofs and also mentioned possible extensions to $\RR^d$ and to
non-convex domains as well.
Here we present another approach to the problem, giving the
solution in $\RR^d$ and for several cases in~$\TT^d$. Actually, we
elaborate on the fact that the problem is essentially
one-dimensional and investigate non-convex open domains as well.
We show that the extremal problems are equivalent to some more
familiar ones concerning trigonometric polynomials, and thus find
the extremal values for a few cases. An analysis of the
relationship between the problem for $\RR^d$ and that for $\TT^d$
is given, showing that the former case is just the limiting case
of the latter. Thus the hierarchy of difficulty is established, so
that extremal problems for trigonometric polynomials gain renewed
recognition.
Keywords:Fourier transform, positive definite functions and measures, TurÃ¡n's extremal problem, convex symmetric domains, positive trigonometric polynomials, dual extremal problems Categories:42B10, 26D15, 42A82, 42A05 |
14. CJM 2006 (vol 58 pp. 3)
The Functional Equation of Zeta Distributions Associated With Non-Euclidean Jordan Algebras This paper is devoted to the study of certain zeta distributions
associated with simple non-Euclidean Jordan algebras. An explicit
form of the corresponding functional equation and Bernstein-type
identities is obtained.
Keywords:Zeta distributions, functional equations, Bernstein polynomials, non-Euclidean Jordan algebras Categories:11M41, 17C20, 11S90 |
15. CJM 2005 (vol 57 pp. 1080)
The Gelfond--Schnirelman Method in Prime Number Theory The original Gelfond--Schnirelman method, proposed in 1936, uses
polynomials with integer coefficients and small norms on $[0,1]$
to give a Chebyshev-type lower bound in prime number theory. We
study a generalization of this method for polynomials in many
variables. Our main result is a lower bound for the integral of
Chebyshev's $\psi$-function, expressed in terms of the weighted
capacity. This extends previous work of Nair and Chudnovsky, and
connects the subject to the potential theory with external fields
generated by polynomial-type weights. We also solve the
corresponding potential theoretic problem, by finding the extremal
measure and its support.
Keywords:distribution of prime numbers, polynomials, integer, coefficients, weighted transfinite diameter, weighted capacity, potentials Categories:11N05, 31A15, 11C08 |
16. CJM 2002 (vol 54 pp. 709)
$q$-Integral and Moment Representations for $q$-Orthogonal Polynomials We develop a method for deriving integral representations of certain
orthogonal polynomials as moments. These moment representations are
applied to find linear and multilinear generating functions for
$q$-orthogonal polynomials. As a byproduct we establish new
transformation formulas for combinations of basic hypergeometric
functions, including a new representation of the $q$-exponential
function $\mathcal{E}_q$.
Keywords:$q$-integral, $q$-orthogonal polynomials, associated polynomials, $q$-difference equations, generating functions, Al-Salam-Chihara polynomials, continuous $q$-ultraspherical polynomials Categories:33D45, 33D20, 33C45, 30E05 |
17. CJM 2001 (vol 53 pp. 33)
Merit Factors of Polynomials Formed by Jacobi Symbols We give explicit formulas for the $L_4$ norm (or equivalently for the
merit factors) of various sequences of polynomials related to the
polynomials
$$
f(z) := \sum_{n=0}^{N-1} \leg{n}{N} z^n.
$$
and
$$
f_t(z) = \sum_{n=0}^{N-1} \leg{n+t}{N} z^n.
$$
where $(\frac{\cdot}{N})$ is the Jacobi symbol.
Two cases of particular interest are when $N = pq$ is a product of two
primes and $p = q+2$ or $p = q+4$. This extends work of H{\o}holdt,
Jensen and Jensen and of the authors.
This study arises from a number of conjectures of Erd\H{o}s,
Littlewood and others that concern the norms of polynomials with
$-1,1$ coefficients on the disc. The current best examples are of the
above form when $N$ is prime and it is natural to see what happens for
composite~$N$.
Keywords:Character polynomial, Class Number, $-1,1$ coefficients, Merit factor, Fekete polynomials, Turyn Polynomials, Littlewood polynomials, Twin Primes, Jacobi Symbols Categories:11J54, 11B83, 12-04 |
18. CJM 1998 (vol 50 pp. 525)
Nilpotent orbit varieties and the atomic decomposition of the $q$-Kostka polynomials We study the coordinate rings~$k[\Cmubar\cap\hbox{\Frakvii t}]$ of
scheme-theoretic
intersections of nilpotent orbit closures with the diagonal matrices.
Here $\mu'$ gives the Jordan block structure of the nilpotent matrix.
de Concini and Procesi~\cite{deConcini&Procesi} proved a conjecture of
Kraft~\cite{Kraft} that these rings are isomorphic to the cohomology
rings of the varieties constructed by
Springer~\cite{Springer76,Springer78}. The famous $q$-Kostka
polynomial~$\Klmt(q)$ is the Hilbert series for the
multiplicity of the irreducible symmetric group representation indexed
by~$\lambda$ in the ring $k[\Cmubar\cap\hbox{\Frakvii t}]$.
\LS~\cite{L&S:Plaxique,Lascoux} gave combinatorially a decomposition
of~$\Klmt(q)$ as a sum of ``atomic'' polynomials with
non-negative integer coefficients, and Lascoux proposed a
corresponding decomposition in the cohomology model.
Our work provides a geometric interpretation of the atomic
decomposition. The Frobenius-splitting results of Mehta and van der
Kallen~\cite{Mehta&vanderKallen} imply a direct-sum decomposition of
the ideals of nilpotent orbit closures, arising from the inclusions of
the corresponding sets. We carry out the restriction to the diagonal
using a recent theorem of Broer~\cite{Broer}. This gives a direct-sum
decomposition of the ideals yielding the $k[\Cmubar\cap
\hbox{\Frakvii t}]$, and a new proof of the atomic decomposition of
the $q$-Kostka polynomials.
Keywords:$q$-Kostka polynomials, atomic decomposition, nilpotent conjugacy classes, nilpotent orbit varieties Categories:05E10, 14M99, 20G05, 05E15 |
19. CJM 1998 (vol 50 pp. 40)
Green's functions for powers of the invariant Laplacian The aim of the present paper is the computation of Green's functions
for the powers $\DDelta^m$ of the invariant Laplace operator on rank-one
Hermitian symmetric spaces. Starting with the noncompact case, the
unit ball in $\CC^d$, we obtain a complete result for $m=1,2$ in
all dimensions. For $m\ge3$ the formulas grow quite complicated so
we restrict ourselves to the case of the unit disc ($d=1$) where
we develop a method, possibly applicable also in other situations,
for reducing the number of integrations by half, and use it to give
a description of the boundary behaviour of these Green functions
and to obtain their (multi-valued) analytic continuation to the
entire complex plane. Next we discuss the type of special functions
that turn up (hyperlogarithms of Kummer). Finally we treat also
the compact case of the complex projective space $\Bbb P^d$ (for
$d=1$, the Riemann sphere) and, as an application of our results,
use eigenfunction expansions to obtain some new identities involving
sums of Legendre ($d=1$) or Jacobi ($d>1$) polynomials and the
polylogarithm function. The case of Green's functions of powers of
weighted (no longer invariant, but only covariant) Laplacians is
also briefly discussed.
Keywords:Invariant Laplacian, Green's functions, dilogarithm, trilogarithm, Legendre and Jacobi polynomials, hyperlogarithms Categories:35C05, 33E30, 33C45, 34B27, 35J40 |
20. CJM 1998 (vol 50 pp. 152)
Inequalities for rational functions with prescribed poles This paper considers the rational system ${\cal P}_n
(a_1,a_2,\ldots,a_n):= \bigl\{ {P(x) \over \prod_{k=1}^n (x-a_k)},
P\in {\cal P}_n\bigr\}$ with nonreal elements in
$\{a_k\}_{k=1}^{n}\subset\Bbb{C}\setminus [-1,1]$ paired by complex
conjugation. It gives a sharp (to constant) Markov-type inequality
for real rational functions in ${\cal P}_n (a_1,a_2,\ldots,a_n)$.
The corresponding Markov-type inequality for high derivatives
is established, as well as Nikolskii-type inequalities. Some
sharp Markov- and Bernstein-type inequalities with curved majorants
for rational functions in ${\cal P}_n(a_1,a_2,\ldots,a_n)$ are
obtained, which generalize some results for the classical
polynomials. A sharp Schur-type inequality is also proved and
plays a key role in the proofs of our main results.
Keywords:Markov-type inequality, Bernstein-type inequality, Nikolskii-type inequality, Schur-type inequality, rational functions with prescribed poles, curved majorants, Chebyshev polynomials Categories:41A17, 26D07, 26C15 |
21. CJM 1997 (vol 49 pp. 887)
Polynomials with $\{ 0, +1, -1\}$ coefficients and a root close to a given point For a fixed algebraic number $\alpha$ we
discuss how closely $\alpha$ can be approximated by
a root of a $\{0,+1,-1\}$ polynomial of given degree.
We show that the worst rate of approximation tends to
occur for roots of unity, particularly those of small degree.
For roots of unity these bounds depend on
the order of vanishing, $k$, of the polynomial at $\alpha$.
In particular we obtain the following. Let
${\cal B}_{N}$ denote the set of roots of all
$\{0,+1,-1\}$ polynomials of degree at most $N$ and
${\cal B}_{N}(\alpha,k)$ the roots of those
polynomials that have a root of order at most $k$
at $\alpha$. For a Pisot number $\alpha$ in $(1,2]$
we show that
\[
\min_{\beta \in {\cal B}_{N}\setminus \{ \alpha \}} |\alpha
-\beta| \asymp \frac{1}{\alpha^{N}},
\]
and for a root of unity $\alpha$ that
\[
\min_{\beta \in {\cal B}_{N}(\alpha,k)\setminus \{\alpha\}}
|\alpha -\beta|\asymp \frac{1}{N^{(k+1) \left\lceil
\frac{1}{2}\phi (d)\right\rceil +1}}.
\]
We study in detail the case of $\alpha=1$, where, by far, the
best approximations are real.
We give fairly precise bounds on the closest real root to 1.
When $k=0$ or 1 we
can describe the extremal polynomials explicitly.
Keywords:Mahler measure, zero one polynomials, Pisot numbers, root separation Categories:11J68, 30C10 |
22. CJM 1997 (vol 49 pp. 543)
Some summation theorems and transformations for $q$-series We introduce a double sum extension of a very well-poised series and
extend to this the transformations of Bailey and Sears as well as the
${}_6\f_5$ summation formula of F.~H.~Jackson and the $q$-Dixon sum.
We also give $q$-integral representations of the double sum.
Generalizations of the Nassrallah-Rahman integral are also found.
Keywords:Basic hypergeometric series, balanced series,, very well-poised series, integral representations,, Al-Salam-Chihara polynomials. Categories:33D20, 33D60 |
23. CJM 1997 (vol 49 pp. 520)
Classical orthogonal polynomials as moments We show that the Meixner, Pollaczek, Meixner-Pollaczek, the continuous
$q$-ultraspherical polynomials and Al-Salam-Chihara polynomials, in
certain normalization, are moments of probability measures. We use
this fact to derive bilinear and multilinear generating functions for
some of these polynomials. We also comment on the corresponding formulas
for the Charlier, Hermite and Laguerre polynomials.
Keywords:Classical orthogonal polynomials, \ACP, continuous, $q$-ultraspherical polynomials, generating functions, multilinear, generating functions, transformation formulas, umbral calculus Categories:33D45, 33D20, 33C45, 30E05 |
24. CJM 1997 (vol 49 pp. 175)
Orthogonal Polynomials for a Family of Product Weight Functions on the Spheres Based on the theory of spherical harmonics for measures invariant
under a finite reflection group developed by Dunkl recently, we study
orthogonal polynomials with respect to the weight functions
$|x_1|^{\alpha_1}\cdots |x_d|^{\alpha_d}$ on the unit sphere $S^{d-1}$ in
$\RR^d$. The results include explicit formulae for orthonormal polynomials,
reproducing and Poisson kernel, as well as intertwining operator.
Keywords:Orthogonal polynomials in several variables, sphere, h-harmonics Categories:33C50, 33C45, 42C10 |
25. CJM 1997 (vol 49 pp. 74)
Constrained approximation in Sobolev spaces Positive, copositive, onesided and intertwining (co-onesided) polynomial
and spline approximations of functions $f\in\Wp^k\mll$ are considered.
Both uniform and pointwise estimates, which are exact in some sense, are
obtained.
Keywords:Constrained approximation, polynomials, splines, degree of, approximation, $L_p$ space, Sobolev space Categories:41A10, 41A15, 41A25, 41A29 |