Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword polyhedron

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2013 (vol 66 pp. 783)

Izmestiev, Ivan
Infinitesimal Rigidity of Convex Polyhedra through the Second Derivative of the Hilbert-Einstein Functional
The paper is centered around a new proof of the infinitesimal rigidity of convex polyhedra. The proof is based on studying derivatives of the discrete Hilbert-Einstein functional on the space of "warped polyhedra" with a fixed metric on the boundary. The situation is in a sense dual to using derivatives of the volume in order to prove the Gauss infinitesimal rigidity of convex polyhedra. This latter kind of rigidity is related to the Minkowski theorem on the existence and uniqueness of a polyhedron with prescribed face normals and face areas. In the spherical and in the hyperbolic-de Sitter space, there is a perfect duality between the Hilbert-Einstein functional and the volume, as well as between both kinds of rigidity. We review some of the related work and discuss directions for future research.

Keywords:convex polyhedron, rigidity, Hilbert-Einstein functional, Minkowski theorem
Categories:52B99, 53C24

2. CJM 2006 (vol 58 pp. 476)

Chipalkatti, Jaydeep
Apolar Schemes of Algebraic Forms
This is a note on the classical Waring's problem for algebraic forms. Fix integers $(n,d,r,s)$, and let $\Lambda$ be a general $r$-dimensional subspace of degree $d$ homogeneous polynomials in $n+1$ variables. Let $\mathcal{A}$ denote the variety of $s$-sided polar polyhedra of $\Lambda$. We carry out a case-by-case study of the structure of $\mathcal{A}$ for several specific values of $(n,d,r,s)$. In the first batch of examples, $\mathcal{A}$ is shown to be a rational variety. In the second batch, $\mathcal{A}$ is a finite set of which we calculate the cardinality.}

Keywords:Waring's problem, apolarity, polar polyhedron
Categories:14N05, 14N15

3. CJM 2005 (vol 57 pp. 844)

Williams, Gordon
Petrie Schemes
Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Gr\"unbaum--Dress polyhedra, possess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes.

Keywords:Petrie polygon, polyhedron, polytope, abstract polytope, incidence complex, regular polytope, Coxeter group
Categories:52B15, 52B05

© Canadian Mathematical Society, 2014 :