Expand all Collapse all | Results 1 - 5 of 5 |
1. CJM 2007 (vol 59 pp. 1069)
Quotients jacobiens : une approche algÃ©brique Le diagramme d'Eisenbud et Neumann d'un germe est un arbre qui
repr\'esente ce germe et permet d'en calculer les invariants. On donne
une d\'emonstration alg\'ebrique d'un r\'esultat caract\'erisant
l'ensemble des quotients jacobiens d'un germe d'application $(f,g)$
\`a partir du diagramme d'Eisenbud et Neumann de $fg$.
Keywords:SingularitÃ©, jacobien, quotient jacobien, polygone de Newton Categories:14B05, 32S05, 32S50 |
2. CJM 2005 (vol 57 pp. 844)
Petrie Schemes Petrie polygons, especially as they arise in the study of regular
polytopes and Coxeter groups, have been studied by geometers and group
theorists since the early part of the twentieth century. An open
question is the determination of which polyhedra possess Petrie
polygons that are simple closed curves. The current work explores
combinatorial structures in abstract polytopes, called Petrie schemes,
that generalize the notion of a Petrie polygon. It is established
that all of the regular convex polytopes and honeycombs in Euclidean
spaces, as well as all of the Gr\"unbaum--Dress polyhedra, possess
Petrie schemes that are not self-intersecting and thus have Petrie
polygons that are simple closed curves. Partial results are obtained
for several other classes of less symmetric polytopes.
Keywords:Petrie polygon, polyhedron, polytope, abstract polytope, incidence complex, regular polytope, Coxeter group Categories:52B15, 52B05 |
3. CJM 2003 (vol 55 pp. 533)
Automorphismes modÃ©rÃ©s de l'espace affine Le probl\`eme de Jung-Nagata ({\it cf.}\ [J], [N]) consiste \`a savoir
s'il existe des automorphismes de $k[x,y,z]$ qui ne sont pas
mod\'er\'es. Nous proposons une approche nouvelle de cette question,
fond\'ee sur l'utilisation de la th\'eorie des automates et du
polygone de Newton. Cette approche permet notamment de g\'en\'eraliser
de fa\c con significative les r\'esultats de [A].
The Jung-Nagata's problem ({\it cf.}\ [J], [N]) asks if there exists
non-tame (or wild) automorphisms of $k[x,y,z]$. We give a new way to
attack this question, based on the automata theory and the Newton
polygon. This new approch allows us to generalize significantly the
results of [A].
Keywords:tame automorphisms, automata, Newton polygon Category:14R10 |
4. CJM 1998 (vol 50 pp. 581)
The homology of singular polygon spaces Let $M_n$ be the variety of spatial polygons $P= (a_1, a_2, \dots,
a_n)$ whose sides are vectors $a_i \in \text{\bf R}^3$ of length
$\vert a_i \vert=1 \; (1 \leq i \leq n),$ up to motion in
$\text{\bf R}^3.$ It is known that for odd $n$, $M_n$ is a
smooth manifold, while for even $n$, $M_n$ has cone-like singular
points. For odd $n$, the rational homology of $M_n$ was determined
by Kirwan and Klyachko [6], [9]. The purpose of this paper is to
determine the rational homology of $M_n$ for even $n$. For even
$n$, let ${\tilde M}_n$ be the manifold obtained from $M_n$ by the
resolution of the singularities. Then we also determine the
integral homology of ${\tilde M}_n$.
Keywords:singular polygon space, homology Categories:14D20, 57N65 |
5. CJM 1997 (vol 49 pp. 1162)
Isoperimetric inequalities on surfaces of constant curvature In this paper we introduce the concepts of hyperbolic and elliptic
areas and prove uncountably many new geometric isoperimetric
inequalities on the surfaces of constant curvature.
Keywords:Gaussian curvature, Gauss-Bonnet theorem, polygon, pseudo-polygon, pseudo-perimeter, hyperbolic surface, Heron's formula, analytic and geometric isoperimetric inequalities Categories:51M10, 51M25, 52A40, 53C20 |