CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword points

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM Online first

Rotger, Victor; de Vera-Piquero, Carlos
Galois Representations Over Fields of Moduli and Rational Points on Shimura Curves
The purpose of this note is introducing a method for proving the existence of no rational points on a coarse moduli space $X$ of abelian varieties over a given number field $K$, in cases where the moduli problem is not fine and points in $X(K)$ may not be represented by an abelian variety (with additional structure) admitting a model over the field $K$. This is typically the case when the abelian varieties that are being classified have even dimension. The main idea, inspired on the work of Ellenberg and Skinner on the modularity of $\mathbb{Q}$-curves, is that to a point $P=[A]\in X(K)$ represented by an abelian variety $A/\bar K$ one may still attach a Galois representation of $\operatorname{Gal}(\bar K/K)$ with values in the quotient group $\operatorname{GL}(T_\ell(A))/\operatorname{Aut}(A)$, provided $\operatorname{Aut}(A)$ lies in the centre of $\operatorname{GL}(T_\ell(A))$. We exemplify our method in the cases where $X$ is a Shimura curve over an imaginary quadratic field or an Atkin-Lehner quotient over $\mathbb{Q}$.

Keywords:Shimura curves, rational points, Galois representations, Hasse principle, Brauer-Manin obstruction
Categories:11G18, 14G35, 14G05

2. CJM 2012 (vol 65 pp. 823)

Guardo, Elena; Harbourne, Brian; Van Tuyl, Adam
Symbolic Powers Versus Regular Powers of Ideals of General Points in $\mathbb{P}^1 \times \mathbb{P}^1$
Recent work of Ein-Lazarsfeld-Smith and Hochster-Huneke raised the problem of which symbolic powers of an ideal are contained in a given ordinary power of the ideal. Bocci-Harbourne developed methods to address this problem, which involve asymptotic numerical characters of symbolic powers of the ideals. Most of the work done up to now has been done for ideals defining 0-dimensional subschemes of projective space. Here we focus on certain subschemes given by a union of lines in $\mathbb{P}^3$ which can also be viewed as points in $\mathbb{P}^1 \times \mathbb{P}^1$. We also obtain results on the closely related problem, studied by Hochster and by Li-Swanson, of determining situations for which each symbolic power of an ideal is an ordinary power.

Keywords:symbolic powers, multigraded, points
Categories:13F20, 13A15, 14C20

3. CJM 2012 (vol 64 pp. 318)

Ingram, Patrick
Cubic Polynomials with Periodic Cycles of a Specified Multiplier
We consider cubic polynomials $f(z)=z^3+az+b$ defined over $\mathbb{C}(\lambda)$, with a marked point of period $N$ and multiplier $\lambda$. In the case $N=1$, there are infinitely many such objects, and in the case $N\geq 3$, only finitely many (subject to a mild assumption). The case $N=2$ has particularly rich structure, and we are able to describe all such cubic polynomials defined over the field $\bigcup_{n\geq 1}\mathbb{C}(\lambda^{1/n})$.

Keywords:cubic polynomials, periodic points, holomorphic dynamics
Category:37P35

4. CJM 2011 (vol 64 pp. 1248)

Gärtner, Jérôme
Darmon's Points and Quaternionic Shimura Varieties
In this paper, we generalize a conjecture due to Darmon and Logan in an adelic setting. We study the relation between our construction and Kudla's works on cycles on orthogonal Shimura varieties. This relation allows us to conjecture a Gross-Kohnen-Zagier theorem for Darmon's points.

Keywords:elliptic curves, Stark-Heegner points, quaternionic Shimura varieties
Categories:11G05, 14G35, 11F67, 11G40

5. CJM 2011 (vol 64 pp. 3)

Boissière, Samuel
Automorphismes naturels de l'espace de Douady de points sur une surface
On établit quelques résultats généraux relatifs à la taille du groupe d'automorphismes de l'espace de Douady de points sur une surface, puis on étudie quelques propriétés des automorphismes provenant d'un automorphisme de la surface, en particulier leur action sur la cohomologie et la classification de leurs points fixes.

Keywords:Schéma de Hilbert, automorphismes, points fixes
Category:14C05

6. CJM 2009 (vol 61 pp. 1118)

Pontreau, Corentin
Petits points d'une surface
Pour toute sous-vari\'et\'e g\'eom\'etriquement irr\'eductible $V$ du grou\-pe multiplicatif $\mathbb{G}_m^n$, on sait qu'en dehors d'un nombre fini de translat\'es de tores exceptionnels inclus dans $V$, tous les points sont de hauteur minor\'ee par une certaine quantit\'e $q(V)^{-1}>0$. On conna\^it de plus une borne sup\'erieure pour la somme des degr\'es de ces translat\'es de tores pour des valeurs de $q(V)$ polynomiales en le degr\'e de $V$. Ceci n'est pas le cas si l'on exige une minoration quasi-optimale pour la hauteur des points de $V$, essentiellement lin\'eaire en l'inverse du degr\'e. Nous apportons ici une r\'eponse partielle \`a ce probl\`eme\,: nous donnons une majoration de la somme des degr\'es de ces translat\'es de sous-tores de codimension $1$ d'une hypersurface $V$. Les r\'esultats, obtenus dans le cas de $\mathbb{G}_m^3$, mais compl\`etement explicites, peuvent toutefois s'\'etendre \`a $\mathbb{G}_m^n$, moyennant quelques petites complications inh\'erentes \`a la dimension $n$.

Keywords:Hauteur normalisée, groupe multiplicatif, problème de Lehmer, petits points
Categories:11G50, 11J81, 14G40

7. CJM 2004 (vol 56 pp. 716)

Guardo, Elena; Van Tuyl, Adam
Fat Points in $\mathbb{P}^1 \times \mathbb{P}^1$ and Their Hilbert Functions
We study the Hilbert functions of fat points in $\popo$. If $Z \subseteq \popo$ is an arbitrary fat point scheme, then it can be shown that for every $i$ and $j$ the values of the Hilbert function $_{Z}(l,j)$ and $H_{Z}(i,l)$ eventually become constant for $l \gg 0$. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in $\popo$. This enables us to compute all but a finite number values of $H_{Z}$ without using the coordinates of points. We also characterize the ACM fat point schemes sing our description of the eventual behaviour. In fact, n the case that $Z \subseteq \popo$ is ACM, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.

Keywords:Hilbert function, points, fat points, Cohen-Macaulay, multi-projective space
Categories:13D40, 13D02, 13H10, 14A15

8. CJM 2000 (vol 52 pp. 123)

Harbourne, Brian
An Algorithm for Fat Points on $\mathbf{P}^2
Let $F$ be a divisor on the blow-up $X$ of $\pr^2$ at $r$ general points $p_1, \dots, p_r$ and let $L$ be the total transform of a line on $\pr^2$. An approach is presented for reducing the computation of the dimension of the cokernel of the natural map $\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl( \CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$ to the case that $F$ is ample. As an application, a formula for the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$, completely solving the problem of determining the modules in minimal free resolutions of fat point subschemes\break $m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for an arbitrary algebraically closed ground field~$k$.

Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group
Categories:13P10, 14C99, 13D02, 13H15

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/