Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword order

  Expand all        Collapse all Results 1 - 10 of 10

1. CJM 2013 (vol 66 pp. 429)

Rivera-Noriega, Jorge
Perturbation and Solvability of Initial $L^p$ Dirichlet Problems for Parabolic Equations over Non-cylindrical Domains
For parabolic linear operators $L$ of second order in divergence form, we prove that the solvability of initial $L^p$ Dirichlet problems for the whole range $1\lt p\lt \infty$ is preserved under appropriate small perturbations of the coefficients of the operators involved. We also prove that if the coefficients of $L$ satisfy a suitable controlled oscillation in the form of Carleson measure conditions, then for certain values of $p\gt 1$, the initial $L^p$ Dirichlet problem associated to $Lu=0$ over non-cylindrical domains is solvable. The results are adequate adaptations of the corresponding results for elliptic equations.

Keywords:initial $L^p$ Dirichlet problem, second order parabolic equations in divergence form, non-cylindrical domains, reverse Hölder inequalities

2. CJM 2012 (vol 65 pp. 544)

Deitmar, Anton; Horozov, Ivan
Iterated Integrals and Higher Order Invariants
We show that higher order invariants of smooth functions can be written as linear combinations of full invariants times iterated integrals. The non-uniqueness of such a presentation is captured in the kernel of the ensuing map from the tensor product. This kernel is computed explicitly. As a consequence, it turns out that higher order invariants are a free module of the algebra of full invariants.

Keywords:higher order forms, iterated integrals
Categories:14F35, 11F12, 55D35, 58A10

3. CJM 2012 (vol 65 pp. 241)

Aguiar, Marcelo; Lauve, Aaron
Lagrange's Theorem for Hopf Monoids in Species
Following Radford's proof of Lagrange's theorem for pointed Hopf algebras, we prove Lagrange's theorem for Hopf monoids in the category of connected species. As a corollary, we obtain necessary conditions for a given subspecies $\mathbf k$ of a Hopf monoid $\mathbf h$ to be a Hopf submonoid: the quotient of any one of the generating series of $\mathbf h$ by the corresponding generating series of $\mathbf k$ must have nonnegative coefficients. Other corollaries include a necessary condition for a sequence of nonnegative integers to be the dimension sequence of a Hopf monoid in the form of certain polynomial inequalities, and of a set-theoretic Hopf monoid in the form of certain linear inequalities. The latter express that the binomial transform of the sequence must be nonnegative.

Keywords:Hopf monoids, species, graded Hopf algebras, Lagrange's theorem, generating series, Poincaré-Birkhoff-Witt theorem, Hopf kernel, Lie kernel, primitive element, partition, composition, linear order, cyclic order, derangement
Categories:05A15, 05A20, 05E99, 16T05, 16T30, 18D10, 18D35

4. CJM 2011 (vol 64 pp. 24)

Borodachov, S. V.
Lower Order Terms of the Discrete Minimal Riesz Energy on Smooth Closed Curves
We consider the problem of minimizing the energy of $N$ points repelling each other on curves in $\mathbb{R}^d$ with the potential $|x-y|^{-s}$, $s\geq 1$, where $|\, \cdot\, |$ is the Euclidean norm. For a sufficiently smooth, simple, closed, regular curve, we find the next order term in the asymptotics of the minimal $s$-energy. On our way, we also prove that at least for $s\geq 2$, the minimal pairwise distance in optimal configurations asymptotically equals $L/N$, $N\to\infty$, where $L$ is the length of the curve.

Keywords:minimal discrete Riesz energy, lower order term, power law potential, separation radius
Categories:31C20, 65D17

5. CJM 2011 (vol 64 pp. 81)

David, C.; Wu, J.
Pseudoprime Reductions of Elliptic Curves
Let $E$ be an elliptic curve over $\mathbb Q$ without complex multiplication, and for each prime $p$ of good reduction, let $n_E(p) = | E(\mathbb F_p) |$. For any integer $b$, we consider elliptic pseudoprimes to the base $b$. More precisely, let $Q_{E,b}(x)$ be the number of primes $p \leq x$ such that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$, and let $\pi_{E, b}^{\operatorname{pseu}}(x)$ be the number of compositive $n_E(p)$ such that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$ (also called elliptic curve pseudoprimes). Motivated by cryptography applications, we address the problem of finding upper bounds for $Q_{E,b}(x)$ and $\pi_{E, b}^{\operatorname{pseu}}(x)$, generalising some of the literature for the classical pseudoprimes to this new setting.

Keywords:Rosser-Iwaniec sieve, group order of elliptic curves over finite fields, pseudoprimes
Categories:11N36, 14H52

6. CJM 2011 (vol 63 pp. 1238)

Bump, Daniel; Nakasuji, Maki
Casselman's Basis of Iwahori Vectors and the Bruhat Order
W. Casselman defined a basis $f_u$ of Iwahori fixed vectors of a spherical representation $(\pi, V)$ of a split semisimple $p$-adic group $G$ over a nonarchimedean local field $F$ by the condition that it be dual to the intertwining operators, indexed by elements $u$ of the Weyl group $W$. On the other hand, there is a natural basis $\psi_u$, and one seeks to find the transition matrices between the two bases. Thus, let $f_u = \sum_v \tilde{m} (u, v) \psi_v$ and $\psi_u = \sum_v m (u, v) f_v$. Using the Iwahori-Hecke algebra we prove that if a combinatorial condition is satisfied, then $m (u, v) = \prod_{\alpha} \frac{1 - q^{- 1} \mathbf{z}^{\alpha}}{1 -\mathbf{z}^{\alpha}}$, where $\mathbf z$ are the Langlands parameters for the representation and $\alpha$ runs through the set $S (u, v)$ of positive coroots $\alpha \in \hat{\Phi}$ (the dual root system of $G$) such that $u \leqslant v r_{\alpha} < v$ with $r_{\alpha}$ the reflection corresponding to $\alpha$. The condition is conjecturally always satisfied if $G$ is simply-laced and the Kazhdan-Lusztig polynomial $P_{w_0 v, w_0 u} = 1$ with $w_0$ the long Weyl group element. There is a similar formula for $\tilde{m}$ conjecturally satisfied if $P_{u, v} = 1$. This leads to various combinatorial conjectures.

Keywords:Iwahori fixed vector, Iwahori Hecke algebra, Bruhat order, intertwining integrals
Categories:20C08, 20F55, 22E50

7. CJM 2011 (vol 63 pp. 648)

Ngai, Sze-Man
Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps
We set up a framework for computing the spectral dimension of a class of one-dimensional self-similar measures that are defined by iterated function systems with overlaps and satisfy a family of second-order self-similar identities. As applications of our result we obtain the spectral dimension of important measures such as the infinite Bernoulli convolution associated with the golden ratio and convolutions of Cantor-type measures. The main novelty of our result is that the iterated function systems we consider are not post-critically finite and do not satisfy the well-known open set condition.

Keywords:spectral dimension, fractal, Laplacian, self-similar measure, iterated function system with overlaps, second-order self-similar identities
Categories:28A80, , , , 35P20, 35J05, 43A05, 47A75

8. CJM 2000 (vol 52 pp. 961)

Ismail, Mourad E. H.; Pitman, Jim
Algebraic Evaluations of Some Euler Integrals, Duplication Formulae for Appell's Hypergeometric Function $F_1$, and Brownian Variations
Explicit evaluations of the symmetric Euler integral $\int_0^1 u^{\alpha} (1-u)^{\alpha} f(u) \,du$ are obtained for some particular functions $f$. These evaluations are related to duplication formulae for Appell's hypergeometric function $F_1$ which give reductions of $F_1 (\alpha, \beta, \beta, 2 \alpha, y, z)$ in terms of more elementary functions for arbitrary $\beta$ with $z = y/(y-1)$ and for $\beta = \alpha + \half$ with arbitrary $y$, $z$. These duplication formulae generalize the evaluations of some symmetric Euler integrals implied by the following result: if a standard Brownian bridge is sampled at time $0$, time $1$, and at $n$ independent random times with uniform distribution on $[0,1]$, then the broken line approximation to the bridge obtained from these $n+2$ values has a total variation whose mean square is $n(n+1)/(2n+1)$.

Keywords:Brownian bridge, Gauss's hypergeometric function, Lauricella's multiple hypergeometric series, uniform order statistics, Appell functions
Categories:33C65, 60J65

9. CJM 1997 (vol 49 pp. 944)

Jia, R. Q.; Riemenschneider, S. D.; Zhou, D. X.
Approximation by multiple refinable functions
We consider the shift-invariant space, $\bbbs(\Phi)$, generated by a set $\Phi=\{\phi_1,\ldots,\phi_r\}$ of compactly supported distributions on $\RR$ when the vector of distributions $\phi:=(\phi_1,\ldots,\phi_r)^T$ satisfies a system of refinement equations expressed in matrix form as $$ \phi=\sum_{\alpha\in\ZZ}a(\alpha)\phi(2\,\cdot - \,\alpha) $$ where $a$ is a finitely supported sequence of $r\times r$ matrices of complex numbers. Such {\it multiple refinable functions} occur naturally in the study of multiple wavelets. The purpose of the present paper is to characterize the {\it accuracy} of $\Phi$, the order of the polynomial space contained in $\bbbs(\Phi)$, strictly in terms of the refinement mask $a$. The accuracy determines the $L_p$-approximation order of $\bbbs(\Phi)$ when the functions in $\Phi$ belong to $L_p(\RR)$ (see Jia~[10]). The characterization is achieved in terms of the eigenvalues and eigenvectors of the subdivision operator associated with the mask $a$. In particular, they extend and improve the results of Heil, Strang and Strela~[7], and of Plonka~[16]. In addition, a counterexample is given to the statement of Strang and Strela~[20] that the eigenvalues of the subdivision operator determine the accuracy. The results do not require the linear independence of the shifts of $\phi$.

Keywords:Refinement equations, refinable functions, approximation, order, accuracy, shift-invariant spaces, subdivision
Categories:39B12, 41A25, 65F15

10. CJM 1997 (vol 49 pp. 468)

Burris, Stanley; Sárközy, András
Fine spectra and limit laws I. First-order laws
Using Feferman-Vaught techniques we show a certain property of the fine spectrum of an admissible class of structures leads to a first-order law. The condition presented is best possible in the sense that if it is violated then one can find an admissible class with the same fine spectrum which does not have a first-order law. We present three conditions for verifying that the above property actually holds. The first condition is that the count function of an admissible class has regular variation with a certain uniformity of convergence. This applies to a wide range of admissible classes, including those satisfying Knopfmacher's Axiom A, and those satisfying Bateman and Diamond's condition. The second condition is similar to the first condition, but designed to handle the discrete case, {\it i.e.}, when the sizes of the structures in an admissible class $K$ are all powers of a single integer. It applies when either the class of indecomposables or the whole class satisfies Knopfmacher's Axiom A$^\#$. The third condition is also for the discrete case, when there is a uniform bound on the number of $K$-indecomposables of any given size.

Keywords:First order limit laws, generalized number theory
Categories:O3C13, 11N45, 11N80, 05A15, 05A16, 11M41, 11P81

© Canadian Mathematical Society, 2014 :