1. CJM Online first
 Phillips, John; Raeburn, Iain

Centrevalued Index for Toeplitz Operators with Noncommuting Symbols
We formulate and prove a ``winding number'' index
theorem for certain ``Toeplitz'' operators in the same spirit
as GohbergKrein, Lesch and others. The ``number'' is replaced
by a selfadjoint operator in a subalgebra $Z\subseteq Z(A)$
of a unital $C^*$algebra, $A$. We assume a faithful $Z$valued
trace $\tau$ on $A$ left invariant under an action $\alpha:{\mathbf
R}\to Aut(A)$ leaving $Z$ pointwise fixed.If $\delta$ is the
infinitesimal generator of $\alpha$ and $u$ is invertible in
$\operatorname{dom}(\delta)$ then the
``winding operator'' of $u$ is $\frac{1}{2\pi i}\tau(\delta(u)u^{1})\in
Z_{sa}.$ By a careful choice of representations we extend $(A,Z,\tau,\alpha)$
to a von Neumann setting
$(\mathfrak{A},\mathfrak{Z},\bar\tau,\bar\alpha)$ where $\mathfrak{A}=A^{\prime\prime}$
and $\mathfrak{Z}=Z^{\prime\prime}.$
Then $A\subset\mathfrak{A}\subset \mathfrak{A}\rtimes{\bf R}$, the von
Neumann crossed product, and there is a faithful, dual $\mathfrak{Z}$trace
on $\mathfrak{A}\rtimes{\bf R}$. If $P$ is the projection in $\mathfrak{A}\rtimes{\bf
R}$
corresponding to the nonnegative spectrum of the generator of
$\mathbf R$ inside $\mathfrak{A}\rtimes{\mathbf R}$ and
$\tilde\pi:A\to\mathfrak{A}\rtimes{\mathbf R}$
is the embedding then we define for $u\in A^{1}$, $T_u=P\tilde\pi(u)
P$
and show it is Fredholm in an appropriate sense and the $\mathfrak{Z}$valued
index of $T_u$ is the negative of the winding operator.
In outline the proof follows the proof of the scalar case done
previously by the authors. The main difficulty is making sense
of the constructions with the scalars replaced by $\mathfrak{Z}$ in
the von Neumann setting. The construction of the dual $\mathfrak{Z}$trace
on $\mathfrak{A}\rtimes{\mathbf R}$ required the nontrivial development
of a $\mathfrak{Z}$Hilbert Algebra theory. We show that certain of
these Fredholm operators fiber as a ``section'' of Fredholm operators
with scalarvalued index and the centrevalued index fibers as
a section of the scalarvalued indices.
Keywords:index ,Toeplitz operator Categories:46L55, 19K56, 46L80 

2. CJM 2015 (vol 67 pp. 1161)
 Zhang, Junqiang; Cao, Jun; Jiang, Renjin; Yang, Dachun

Nontangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators
Let $w$ be either in the Muckenhoupt class of $A_2(\mathbb{R}^n)$ weights
or in the class of $QC(\mathbb{R}^n)$ weights, and
$L_w:=w^{1}\mathop{\mathrm{div}}(A\nabla)$
the degenerate elliptic operator on the Euclidean space $\mathbb{R}^n$,
$n\ge 2$. In this article, the authors establish the nontangential
maximal function characterization
of the Hardy space $H_{L_w}^p(\mathbb{R}^n)$ associated with $L_w$ for
$p\in (0,1]$ and, when $p\in (\frac{n}{n+1},1]$ and
$w\in A_{q_0}(\mathbb{R}^n)$ with $q_0\in[1,\frac{p(n+1)}n)$,
the authors prove that the associated Riesz transform $\nabla L_w^{1/2}$
is bounded from $H_{L_w}^p(\mathbb{R}^n)$ to the weighted classical
Hardy space $H_w^p(\mathbb{R}^n)$.
Keywords:degenerate elliptic operator, Hardy space, square function, maximal function, molecule, Riesz transform Categories:42B30, 42B35, 35J70 

3. CJM Online first
 Charlesworth, Ian; Nelson, Brent; Skoufranis, Paul

On twofaced families of noncommutative random variables
We demonstrate that the notions of bifree independence and combinatorialbifree
independence of twofaced families are equivalent using a diagrammatic
view of binoncrossing partitions.
These diagrams produce an operator model on a Fock space suitable
for representing any twofaced family of noncommutative random
variables.
Furthermore, using a Kreweras complement on binoncrossing partitions
we establish the expected formulas for the multiplicative convolution
of a bifree pair of twofaced families.
Keywords:free probability, operator algebras, bifree Category:46L54 

4. CJM 2014 (vol 67 pp. 573)
 Chen, Fulin; Gao, Yun; Jing, Naihuan; Tan, Shaobin

Twisted Vertex Operators and Unitary Lie Algebras
A representation of the central extension of the
unitary Lie algebra
coordinated with a skew Laurent polynomial ring
is constructed using vertex operators over an integral $\mathbb Z_2$lattice.
The irreducible decomposition of the representation is explicitly computed and described.
As a byproduct, some fundamental representations of affine
KacMoody Lie algebra of type $A_n^{(2)}$ are recovered
by the new method.
Keywords:Lie algebra, vertex operator, representation theory Categories:17B60, 17B69 

5. CJM 2013 (vol 67 pp. 132)
 Clouâtre, Raphaël

Unitary Equivalence and Similarity to Jordan Models for Weak Contractions of Class $C_0$
We obtain results on the unitary equivalence of weak contractions of
class $C_0$ to their Jordan models under an assumption on their
commutants. In particular, our work addresses the case of arbitrary
finite multiplicity. The main tool is the
theory of boundary representations due to Arveson. We also
generalize and improve previously known results concerning unitary
equivalence and similarity to Jordan models when the minimal function
is a Blaschke product.
Keywords:weak contractions, operators of class $C_0$, Jordan model, unitary equivalence Categories:47A45, 47L55 

6. CJM 2013 (vol 66 pp. 1382)
 Wu, Xinfeng

Weighted Carleson Measure Spaces Associated with Different Homogeneities
In this paper, we introduce weighted Carleson measure spaces associated
with different homogeneities and prove that these spaces are the dual spaces
of weighted Hardy spaces studied in a forthcoming paper.
As an application, we establish
the boundedness of composition of two CalderÃ³nZygmund operators with
different homogeneities on the weighted Carleson measure spaces; this,
in particular, provides the weighted endpoint estimates for the operators
studied by PhongStein.
Keywords:composition of operators, weighted Carleson measure spaces, duality Categories:42B20, 42B35 

7. CJM 2013 (vol 66 pp. 387)
 Mashreghi, J.; Shabankhah, M.

Composition of Inner Functions
We study the image of the model subspace $K_\theta$ under the
composition operator $C_\varphi$, where $\varphi$ and $\theta$ are
inner functions, and find the smallest model subspace which contains
the linear manifold $C_\varphi K_\theta$. Then we characterize the
case when $C_\varphi$ maps $K_\theta$ into itself. This case leads to
the study of the inner functions $\varphi$ and $\psi$ such that the
composition $\psi\circ\varphi$ is a divisor of $\psi$ in the family of
inner functions.
Keywords:composition operators, inner functions, Blaschke products, model subspaces Categories:30D55, 30D05, 47B33 

8. CJM 2013 (vol 65 pp. 1217)
 Cruz, Victor; Mateu, Joan; Orobitg, Joan

Beltrami Equation with Coefficient in Sobolev and Besov Spaces
Our goal in this work is to present some function spaces on the
complex plane $\mathbb C$, $X(\mathbb C)$, for which the quasiregular solutions of
the Beltrami equation, $\overline\partial f (z) = \mu(z) \partial f
(z)$, have first derivatives locally in $X(\mathbb C)$, provided that the
Beltrami coefficient $\mu$ belongs to $X(\mathbb C)$.
Keywords:quasiregular mappings, Beltrami equation, Sobolev spaces, CalderÃ³nZygmund operators Categories:30C62, 35J99, 42B20 

9. CJM 2012 (vol 65 pp. 989)
 Chu, CH.; Velasco, M. V.

Automatic Continuity of Homomorphisms in Nonassociative Banach Algebras
We introduce the concept of a rare element in a nonassociative normed
algebra and show that the existence of such element is the only obstruction
to continuity of a surjective homomorphism from a nonassociative Banach
algebra to a unital normed algebra with simple completion. Unital
associative algebras do not admit any rare element and hence automatic
continuity holds.
Keywords:automatic continuity, nonassociative algebra, spectrum, rare operator, rare element Categories:46H40, 46H70 

10. CJM 2011 (vol 64 pp. 1036)
 Koh, Doowon; Shen, ChunYen

Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields
In this paper we study the extension problem, the
averaging problem, and the generalized ErdÅsFalconer distance
problem associated with arbitrary homogeneous varieties in three
dimensional vector spaces over finite fields. In the case when the
varieties do not contain any plane passing through the origin, we
obtain the best possible results on the aforementioned three problems. In
particular, our result on the extension problem modestly generalizes
the result by Mockenhaupt and Tao who studied the particular conical
extension problem. In addition, investigating the Fourier decay on
homogeneous varieties enables us to give complete mapping properties
of averaging operators. Moreover, we improve the size condition on a
set such that the cardinality of its distance set is nontrivial.
Keywords:extension problems, averaging operator, finite fields, ErdÅsFalconer distance problems, homogeneous polynomial Categories:42B05, 11T24, 52C17 

11. CJM 2011 (vol 64 pp. 1329)
12. CJM 2011 (vol 64 pp. 669)
 Pantano, Alessandra; Paul, Annegret; SalamancaRiba, Susana A.

The Genuine Omegaregular Unitary Dual of the Metaplectic Group
We classify all genuine unitary representations of the metaplectic group whose
infinitesimal character is real and at least as regular as that of the
oscillator representation. In a previous paper we exhibited a certain family
of representations satisfying these conditions, obtained by cohomological
induction from the tensor product of a onedimensional representation and an
oscillator representation. Our main theorem asserts that this family exhausts
the genuine omegaregular unitary dual of the metaplectic group.
Keywords:Metaplectic group, oscillator representation, bottom layer map, cohomological induction, Parthasarathy's Dirac Operator Inequality, pseudospherical principal series Category:22E46 

13. CJM 2011 (vol 64 pp. 805)
 Chapon, François; Defosseux, Manon

Quantum Random Walks and Minors of Hermitian Brownian Motion
Considering quantum random walks, we construct discretetime
approximations of the eigenvalues processes of minors of Hermitian
Brownian motion. It has been recently proved by Adler, Nordenstam, and
van Moerbeke that the process of eigenvalues of
two consecutive minors of a Hermitian Brownian motion is a Markov
process; whereas, if one considers more than two consecutive minors,
the Markov property fails. We show that there are analog results in
the noncommutative counterpart and establish the Markov property of
eigenvalues of some particular submatrices of Hermitian Brownian
motion.
Keywords:quantum random walk, quantum Markov chain, generalized casimir operators, Hermitian Brownian motion, diffusions, random matrices, minor process Categories:46L53, 60B20, 14L24 

14. CJM 2011 (vol 64 pp. 892)
 Hytönen, Tuomas; Liu, Suile; Yang, Dachun; Yang, Dongyong

Boundedness of CalderÃ³nZygmund Operators on Nonhomogeneous Metric Measure Spaces
Let $({\mathcal X}, d, \mu)$ be a
separable metric measure space satisfying the known upper
doubling condition, the geometrical doubling condition, and the
nonatomic condition that $\mu(\{x\})=0$ for all $x\in{\mathcal X}$.
In this paper, we show that the boundedness of a CalderÃ³nZygmund
operator $T$ on $L^2(\mu)$ is equivalent to that of $T$ on
$L^p(\mu)$ for some $p\in (1, \infty)$, and that of $T$ from $L^1(\mu)$
to $L^{1,\,\infty}(\mu).$ As an application, we prove that if $T$ is a
CalderÃ³nZygmund operator bounded on $L^2(\mu)$,
then its maximal operator is bounded on $L^p(\mu)$
for all $p\in (1, \infty)$ and from
the space of all complexvalued Borel measures on
${\mathcal X}$ to $L^{1,\,\infty}(\mu)$.
All these results generalize the corresponding results of Nazarov et al.
on metric spaces with
measures satisfying the socalled polynomial growth condition.
Keywords:upper doubling, geometrical doubling, dominating function, weak type $(1,1)$ estimate, CalderÃ³nZygmund operator, maximal operator Categories:42B20, 42B25, 30L99 

15. CJM 2011 (vol 64 pp. 183)
 Nowak, Adam; Stempak, Krzysztof

Negative Powers of Laguerre Operators
We study negative powers of Laguerre differential operators in $\mathbb{R}^d$, $d\ge1$.
For these operators we prove twoweight $L^pL^q$ estimates with ranges of $q$ depending
on $p$. The case of the harmonic oscillator (Hermite operator) has recently
been treated by Bongioanni and Torrea by using a straightforward
approach of kernel estimates. Here these results are applied in certain Laguerre settings.
The procedure is fairly direct for Laguerre function expansions of
Hermite type,
due to some monotonicity properties of the kernels involved.
The case of Laguerre function expansions of convolution type is less straightforward.
For halfinteger type indices $\alpha$ we transfer the desired results from the Hermite setting
and then apply an interpolation argument based on a device we call the
convexity principle
to cover the continuous range of $\alpha\in[1/2,\infty)^d$. Finally, we investigate negative powers
of the Dunkl harmonic oscillator in the context of a finite reflection group acting on $\mathbb{R}^d$ and
isomorphic to $\mathbb Z^d_2$. The two weight $L^pL^q$ estimates we obtain in this setting are essentially
consequences of those for Laguerre function expansions of convolution type.
Keywords:potential operator, fractional integral, Riesz potential, negative power, harmonic oscillator, Laguerre operator, Dunkl harmonic oscillator Categories:47G40, 31C15, 26A33 

16. CJM 2011 (vol 63 pp. 862)
17. CJM 2010 (vol 63 pp. 181)
 Ismail, Mourad E. H.; Obermaier, Josef

Characterizations of Continuous and Discrete $q$Ultraspherical Polynomials
We characterize the continuous $q$ultraspherical polynomials in
terms of the special form of the coefficients in the expansion
$\mathcal{D}_q P_n(x)$ in the basis $\{P_n(x)\}$, $\mathcal{D}_q$
being the AskeyWilson divided difference operator. The polynomials
are assumed to be symmetric, and the connection coefficients
are multiples of the reciprocal of the square of the $L^2$ norm of
the polynomials. A similar characterization is given for the discrete
$q$ultraspherical polynomials. A new proof of the evaluation of
the connection coefficients for big $q$Jacobi polynomials is given.
Keywords:continuous $q$ultraspherical polynomials, big $q$Jacobi polynomials, discrete $q$ultra\spherical polynomials, AskeyWilson operator, $q$difference operator, recursion coefficients Categories:33D45, 42C05 

18. CJM 2010 (vol 62 pp. 1419)
 Yang, Dachun; Yang, Dongyong

BMOEstimates for Maximal Operators via Approximations of the Identity with NonDoubling Measures
Let $\mu$ be a nonnegative Radon measure
on $\mathbb{R}^d$ that satisfies the growth condition that there exist
constants $C_0>0$ and $n\in(0,d]$ such that for all $x\in\mathbb{R}^d$ and
$r>0$, ${\mu(B(x,\,r))\le C_0r^n}$, where $B(x,r)$ is the open ball
centered at $x$ and having radius $r$. In this paper, the authors prove
that if $f$ belongs to the $\textrm {BMO}$type space $\textrm{RBMO}(\mu)$ of Tolsa, then
the homogeneous maximal function $\dot{\mathcal{M}}_S(f)$ (when $\mathbb{R}^d$ is not an
initial cube) and the inhomogeneous maximal function
$\mathcal{M}_S(f)$ (when $\mathbb{R}^d$ is an initial cube)
associated with a given approximation of the identity $S$ of Tolsa are
either infinite everywhere or finite almost everywhere,
and in the latter case, $\dot{\mathcal{M}}_S$ and $\mathcal{M}_S$ are bounded from
$\textrm{RBMO}(\mu)$ to the $\textrm {BLO}$type
space $\textrm{RBLO}(\mu)$. The authors also prove that the inhomogeneous
maximal operator $\mathcal{M}_S$ is bounded from the local
$\textrm {BMO}$type space $\textrm{rbmo}(\mu)$
to the local $\textrm {BLO}$type space $\textrm{rblo}(\mu)$.
Keywords:Nondoubling measure, maximal operator, approximation of the identity, RBMO(mu), RBLO(mu), rbmo(mu), rblo(mu) Categories:42B25, 42B30, 47A30, 43A99 

19. CJM 2010 (vol 62 pp. 1037)
20. CJM 2009 (vol 62 pp. 218)
 Xing, Yang

The General Definition of the Complex MongeAmpÃ¨re Operator on Compact KÃ¤hler Manifolds
We introduce a wide subclass ${\mathcal F}(X,\omega)$ of
quasiplurisubharmonic functions in a compact KÃ¤hler manifold, on
which the complex MongeAmpÃ¨re operator is well defined and the
convergence theorem is valid. We also prove that ${\mathcal F}(X,\omega)$
is a convex cone and includes all quasiplurisubharmonic functions
that are in the Cegrell class.
Keywords:complex MongeAmpÃ¨re operator, compact KÃ¤hler manifold Categories:32W20, 32Q15 

21. CJM 2009 (vol 62 pp. 305)
 Hua, He; Yunbai, Dong; Xianzhou, Guo

Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators
Let $\mathcal H$ be a complex separable Hilbert space and ${\mathcal L}({\mathcal H})$ denote the collection of bounded linear operators on ${\mathcal H}$. In this paper, we show that for any operator $A\in{\mathcal L}({\mathcal H})$, there exists a stably finitely (SI) decomposable operator $A_\epsilon$, such that $\AA_{\epsilon}\<\epsilon$ and ${\mathcal{\mathcal A}'(A_{\epsilon})}/\operatorname{rad} {{\mathcal A}'(A_{\epsilon})}$ is commutative, where $\operatorname{rad}{{\mathcal A}'(A_{\epsilon})}$ is the Jacobson radical of ${{\mathcal A}'(A_{\epsilon})}$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of CowenDouglas operators given by C. L. Jiang.
Keywords:$K_{0}$group, strongly irreducible decomposition, CowenâDouglas operators, commutant algebra, similarity classification Categories:47A05, 47A55, 46H20 

22. CJM 2009 (vol 62 pp. 202)
23. CJM 2009 (vol 61 pp. 1262)
 Dong, Z.

On the Local Lifting Properties of Operator Spaces
In this paper, we mainly study operator spaces which have the
locally lifting property (LLP). The dual of any ternary ring of operators is shown to
satisfy the strongly local reflexivity, and this is used to prove
that strongly local reflexivity holds also for operator spaces
which have the LLP. Several homological characterizations of the
LLP and weak expectation property are given. We also prove that for any operator space
$V$, $V^{**}$ has the LLP if and only if $V$ has the LLP and
$V^{*}$ is exact.
Keywords:operator space, locally lifting property, strongly locally reflexive Category:46L07 

24. CJM 2009 (vol 61 pp. 190)
 Lu, Yufeng; Shang, Shuxia

Bounded Hankel Products on the Bergman Space of the Polydisk
We consider the problem of determining for which square integrable
functions $f$ and $g$ on the polydisk the densely defined Hankel
product $H_{f}H_g^\ast$ is bounded on the Bergman space of the
polydisk. Furthermore, we obtain similar results for the mixed
Haplitz products $H_{g}T_{\bar{f}}$ and $T_{f}H_{g}^{*}$, where $f$
and $g$ are square integrable on the polydisk and $f$ is analytic.
Keywords:Toeplitz operator, Hankel operator, Haplitz products, Bergman space, polydisk Categories:47B35, 47B47 

25. CJM 2008 (vol 60 pp. 1010)
 Galé, José E.; Miana, Pedro J.

$H^\infty$ Functional Calculus and MikhlinType Multiplier Conditions
Let $T$ be a sectorial operator. It is known that the existence of a
bounded (suitably scaled) $H^\infty$ calculus for $T$, on every
sector containing the positive halfline, is equivalent to the
existence of a bounded functional calculus on the Besov algebra
$\Lambda_{\infty,1}^\alpha(\R^+)$. Such an algebra
includes functions defined by Mikhlintype conditions and so the
Besov calculus can be seen as a result on multipliers for $T$. In
this paper, we use fractional derivation to analyse in detail the
relationship between $\Lambda_{\infty,1}^\alpha$ and Banach algebras
of Mikhlintype. As a result, we obtain a new version of the quoted
equivalence.
Keywords:functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, unbounded operators, quasimultipliers Categories:47A60, 47D03, 46J15, 26A33, 47L60, 47B48, 43A22 
