CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword normal

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM 2012 (vol 64 pp. 1222)

Bobiński, Grzegorz
Normality of Maximal Orbit Closures for Euclidean Quivers
Let $\Delta$ be an Euclidean quiver. We prove that the closures of the maximal orbits in the varieties of representations of $\Delta$ are normal and Cohen--Macaulay (even complete intersections). Moreover, we give a generalization of this result for the tame concealed-canonical algebras.

Keywords:normal variety, complete intersection, Euclidean quiver, concealed-canonical algebra
Categories:16G20, 14L30

2. CJM 2012 (vol 64 pp. 1182)

Tall, Franklin D.
PFA$(S)[S]$: More Mutually Consistent Topological Consequences of $PFA$ and $V=L$
Extending the work of Larson and Todorcevic, we show there is a model of set theory in which normal spaces are collectionwise Hausdorff if they are either first countable or locally compact, and yet there are no first countable $L$-spaces or compact $S$-spaces. The model is one of the form PFA$(S)[S]$, where $S$ is a coherent Souslin tree.

Keywords:PFA$(S)[S]$, proper forcing, coherent Souslin tree, locally compact, normal, collectionwise Hausdorff, supercompact cardinal
Categories:54A35, 54D15, 54D20, 54D45, 03E35, 03E57, 03E65

3. CJM 2010 (vol 63 pp. 200)

Rahman, Mizan
An Explicit Polynomial Expression for a $q$-Analogue of the 9-$j$ Symbols
Using standard transformation and summation formulas for basic hypergeometric series we obtain an explicit polynomial form of the $q$-analogue of the 9-$j$ symbols, introduced by the author in a recent publication. We also consider a limiting case in which the 9-$j$ symbol factors into two Hahn polynomials. The same factorization occurs in another limit case of the corresponding $q$-analogue.

Keywords:6-$j$ and 9-$j$ symbols, $q$-analogues, balanced and very-well-poised basic hypergeometric series, orthonormal polynomials in one and two variables, Racah and $q$-Racah polynomials and their extensions
Categories:33D45, 33D50

4. CJM 2009 (vol 61 pp. 1118)

Pontreau, Corentin
Petits points d'une surface
Pour toute sous-vari\'et\'e g\'eom\'etriquement irr\'eductible $V$ du grou\-pe multiplicatif $\mathbb{G}_m^n$, on sait qu'en dehors d'un nombre fini de translat\'es de tores exceptionnels inclus dans $V$, tous les points sont de hauteur minor\'ee par une certaine quantit\'e $q(V)^{-1}>0$. On conna\^it de plus une borne sup\'erieure pour la somme des degr\'es de ces translat\'es de tores pour des valeurs de $q(V)$ polynomiales en le degr\'e de $V$. Ceci n'est pas le cas si l'on exige une minoration quasi-optimale pour la hauteur des points de $V$, essentiellement lin\'eaire en l'inverse du degr\'e. Nous apportons ici une r\'eponse partielle \`a ce probl\`eme\,: nous donnons une majoration de la somme des degr\'es de ces translat\'es de sous-tores de codimension $1$ d'une hypersurface $V$. Les r\'esultats, obtenus dans le cas de $\mathbb{G}_m^3$, mais compl\`etement explicites, peuvent toutefois s'\'etendre \`a $\mathbb{G}_m^n$, moyennant quelques petites complications inh\'erentes \`a la dimension $n$.

Keywords:Hauteur normalisée, groupe multiplicatif, problème de Lehmer, petits points
Categories:11G50, 11J81, 14G40

5. CJM 2005 (vol 57 pp. 750)

Sabourin, Hervé
Sur la structure transverse à une orbite nilpotente adjointe
We are interested in Poisson structures to transverse nilpotent adjoint orbits in a complex semi-simple Lie algebra, and we study their polynomial nature. Furthermore, in the case of $sl_n$, we construct some families of nilpotent orbits with quadratic transverse structures.

Keywords:nilpotent adjoint orbits, conormal orbits, Poisson transverse structure
Categories:22E, 53D

6. CJM 2004 (vol 56 pp. 897)

Borwein, Jonathan M.; Borwein, David; Galway, William F.
Finding and Excluding $b$-ary Machin-Type Individual Digit Formulae
Constants with formulae of the form treated by D.~Bailey, P.~Borwein, and S.~Plouffe (\emph{BBP formulae} to a given base $b$) have interesting computational properties, such as allowing single digits in their base $b$ expansion to be independently computed, and there are hints that they should be \emph{normal} numbers, {\em i.e.,} that their base $b$ digits are randomly distributed. We study a formally limited subset of BBP formulae, which we call \emph{Machin-type BBP formulae}, for which it is relatively easy to determine whether or not a given constant $\kappa$ has a Machin-type BBP formula. In particular, given $b \in \mathbb{N}$, $b>2$, $b$ not a proper power, a $b$-ary Machin-type BBP arctangent formula for $\kappa$ is a formula of the form $\kappa = \sum_{m} a_m \arctan(-b^{-m})$, $a_m \in \mathbb{Q}$, while when $b=2$, we also allow terms of the form $a_m \arctan(1/(1-2^m))$. Of particular interest, we show that $\pi$ has no Machin-type BBP arctangent formula when $b \neq 2$. To the best of our knowledge, when there is no Machin-type BBP formula for a constant then no BBP formula of any form is known for that constant.

Keywords:BBP formulae, Machin-type formulae, arctangents,, logarithms, normality, Mersenne primes, Bang's theorem,, Zsigmondy's theorem, primitive prime factors, $p$-adic analysis
Categories:11Y99, 11A51, 11Y50, 11K36, 33B10

7. CJM 2000 (vol 52 pp. 897)

Christiansen, T. J.; Joshi, M. S.
Higher Order Scattering on Asymptotically Euclidean Manifolds
We develop a scattering theory for perturbations of powers of the Laplacian on asymptotically Euclidean manifolds. The (absolute) scattering matrix is shown to be a Fourier integral operator associated to the geodesic flow at time $\pi$ on the boundary. Furthermore, it is shown that on $\Real^n$ the asymptotics of certain short-range perturbations of $\Delta^k$ can be recovered from the scattering matrix at a finite number of energies.

Keywords:scattering theory, conormal, Lagrangian
Category:58G15

8. CJM 1999 (vol 51 pp. 26)

Fabian, Marián; Mordukhovich, Boris S.
Separable Reduction and Supporting Properties of Fréchet-Like Normals in Banach Spaces
We develop a method of separable reduction for Fr\'{e}chet-like normals and $\epsilon$-normals to arbitrary sets in general Banach spaces. This method allows us to reduce certain problems involving such normals in nonseparable spaces to the separable case. It is particularly helpful in Asplund spaces where every separable subspace admits a Fr\'{e}chet smooth renorm. As an applicaton of the separable reduction method in Asplund spaces, we provide a new direct proof of a nonconvex extension of the celebrated Bishop-Phelps density theorem. Moreover, in this way we establish new characterizations of Asplund spaces in terms of $\epsilon$-normals.

Keywords:nonsmooth analysis, Banach spaces, separable reduction, Fréchet-like normals and subdifferentials, supporting properties, Asplund spaces
Categories:49J52, 58C20, 46B20

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/