CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword non-elliptic random environment

  Expand all        Collapse all Results 1 - 1 of 1

1. CJM 2013 (vol 66 pp. 1050)

Holmes, Mark; Salisbury, Thomas S.
Random Walks in Degenerate Random Environments
We study the asymptotic behaviour of random walks in i.i.d. random environments on $\mathbb{Z}^d$. The environments need not be elliptic, so some steps may not be available to the random walker. We prove a monotonicity result for the velocity (when it exists) for any 2-valued environment, and show that this does not hold for 3-valued environments without additional assumptions. We give a proof of directional transience and the existence of positive speeds under strong, but non-trivial conditions on the distribution of the environment. Our results include generalisations (to the non-elliptic setting) of 0-1 laws for directional transience, and in 2-dimensions the existence of a deterministic limiting velocity.

Keywords:random walk, non-elliptic random environment, zero-one law, coupling
Category:60K37

© Canadian Mathematical Society, 2014 : https://cms.math.ca/