1. CJM Online first
 Chen, Xianghong; Seeger, Andreas

Convolution powers of Salem measures with applications
We study the regularity of convolution powers for measures supported
on
Salem sets, and prove related results on Fourier restriction
and Fourier multipliers. In particular we show
that for $\alpha$ of the form
${d}/{n}$, $n=2,3,\dots$ there exist $\alpha$Salem measures
for which the $L^2$ Fourier restriction theorem holds in the
range $p\le \frac{2d}{2d\alpha}$.
The results rely on ideas of KÃ¶rner.
We extend some of his constructions to obtain upper regular $\alpha$Salem
measures, with sharp regularity results for $n$fold convolutions
for all $n\in \mathbb{N}$.
Keywords:convolution powers, Fourier restriction, Salem sets, Salem measures, random sparse sets, Fourier multipliers of BochnerRiesz type Categories:42A85, 42B99, 42B15, 42A61 

2. CJM 2016 (vol 69 pp. 54)
 Hartz, Michael

On the Isomorphism Problem for Multiplier Algebras of NevanlinnaPick Spaces
We continue the investigation of the isomorphism problem for
multiplier algebras of reproducing kernel
Hilbert spaces with the complete NevanlinnaPick property.
In contrast to previous work in this area,
we do not study these spaces by identifying them with restrictions
of a universal space, namely the DruryArveson space.
Instead, we work directly with the Hilbert spaces and their
reproducing kernels. In particular,
we show that two multiplier algebras of NevanlinnaPick spaces
on the same set are equal if and only if the Hilbert
spaces are equal. Most of the article is devoted to the study
of a special class of
complete NevanlinnaPick spaces on homogeneous varieties. We
provide a complete
answer to the question of when two multiplier algebras of spaces
of this type
are algebraically or isometrically isomorphic. This generalizes
results of Davidson, Ramsey, Shalit,
and the author.
Keywords:nonselfadjoint operator algebras, reproducing kernel Hilbert spaces, multiplier algebra, NevanlinnaPick kernels, isomorphism problem Categories:47L30, 46E22, 47A13 

3. CJM 2016 (vol 68 pp. 309)
 Daws, Matthew

Categorical Aspects of Quantum Groups: Multipliers and Intrinsic Groups
We show that the assignment of the (left) completely bounded
multiplier algebra
$M_{cb}^l(L^1(\mathbb G))$ to a locally compact quantum group
$\mathbb G$, and
the assignment of the intrinsic group, form functors between
appropriate
categories. Morphisms of locally compact quantum
groups can be described by Hopf $*$homomorphisms between universal
$C^*$algebras, by bicharacters, or by special sorts of coactions.
We show that the whole
theory of completely bounded multipliers can be lifted to the
universal
$C^*$algebra level, and that then the different pictures of
both multipliers
(reduced, universal, and as centralisers)
and morphisms interact in extremely natural ways. The intrinsic
group of a
quantum group can be realised as a class of multipliers, and
so our techniques
immediately apply. We also show how to think of the intrinsic
group using
the universal $C^*$algebra picture, and then, again, show how
the differing
views on the intrinsic group interact naturally with morphisms.
We show that
the intrinsic group is the ``maximal classical'' quantum subgroup
of a locally
compact quantum group, show that it is even closed in the strong
Vaes sense,
and that the intrinsic group functor is an adjoint to the inclusion
functor
from locally compact groups to quantum groups.
Keywords:locally compact quantum group, morphism, intrinsic group, multiplier, centraliser Categories:20G42, 22D25, 43A22, 43A35, 43A95, 46L52, 46L89, 47L25 

4. CJM 2015 (vol 67 pp. 827)
 Kaniuth, Eberhard

The BochnerSchoenbergEberlein Property and Spectral Synthesis for Certain Banach Algebra Products
Associated with two commutative Banach algebras $A$ and $B$ and
a character $\theta$ of $B$ is a certain Banach algebra product
$A\times_\theta B$, which is a splitting extension of $B$ by
$A$. We investigate two topics for the algebra $A\times_\theta
B$ in relation to the corresponding ones of $A$ and $B$. The
first one is the BochnerSchoenbergEberlein property and the
algebra of BochnerSchoenbergEberlein functions on the spectrum,
whereas the second one concerns the wide range of spectral synthesis
problems for $A\times_\theta B$.
Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSEalgebra, BSEfunction Categories:46J10, 46J25, 43A30, 43A45 

5. CJM 2014 (vol 66 pp. 1358)
 Osėkowski, Adam

Sharp Localized Inequalities for Fourier Multipliers
In the paper we study sharp localized $L^q\colon L^p$ estimates for
Fourier multipliers resulting from modulation of the jumps of
LÃ©vy
processes.
The proofs of these estimates rest on probabilistic methods and
exploit related sharp bounds for differentially subordinated
martingales, which are of independent interest. The lower bounds
for
the constants involve the analysis of laminates, a family of
certain
special probability measures on $2\times 2$ matrices. As an
application, we obtain new sharp bounds for the real and imaginary
parts of the BeurlingAhlfors operator .
Keywords:Fourier multiplier, martingale, laminate Categories:42B15, 60G44, 42B20 

6. CJM 2013 (vol 65 pp. 1005)
 Forrest, Brian; Miao, Tianxuan

Uniformly Continuous Functionals and MWeakly Amenable Groups
Let $G$ be a locally compact group. Let $A_{M}(G)$ ($A_{0}(G)$)denote
the closure of $A(G)$, the Fourier algebra of $G$ in the space of
bounded (completely bounded) multipliers of $A(G)$.
We call a locally compact group Mweakly amenable if
$A_M(G)$
has a
bounded approximate identity. We will show that when $G$ is Mweakly
amenable, the algebras $A_{M}(G)$ and $A_{0}(G)$ have
properties that are characteristic of the Fourier algebra of an
amenable group. Along the way we show that the sets of tolopolically
invariant means associated with these algebras have the same
cardinality as those of the Fourier algebra.
Keywords:Fourier algebra, multipliers, weakly amenable, uniformly continuous functionals Categories:43A07, 43A22, 46J10, 47L25 

7. CJM 2012 (vol 65 pp. 510)
 Blasco de la Cruz, Oscar; Villarroya Alvarez, Paco

Transference of vectorvalued multipliers on weighted $L^p$spaces
We prove
restriction and extension of multipliers between
weighted Lebesgue spaces with
two different weights, which belong to a class more general than periodic weights, and two different exponents of integrability which can be
below one.
We also develop some adhoc methods which apply to weights
defined by the product of periodic weights with functions of power type.
Our vectorvalued approach allow us to extend results
to transference of maximal multipliers and provide transference of LittlewoodPaley inequalities.
Keywords:Fourier multipliers, restriction theorems, weighted spaces Categories:42B15, 42B35 

8. CJM 2012 (vol 65 pp. 299)
 Grafakos, Loukas; Miyachi, Akihiko; Tomita, Naohito

On Multilinear Fourier Multipliers of Limited Smoothness
In this paper,
we prove certain $L^2$estimate
for multilinear Fourier multiplier operators
with multipliers of limited smoothness.
As a result,
we extend the result of CalderÃ³n and Torchinsky
in the linear theory to the multilinear case.
The sharpness of our results and some
related estimates in Hardy spaces
are also discussed.
Keywords:multilinear Fourier multipliers, HÃ¶rmander multiplier theorem, Hardy spaces Categories:42B15, 42B20 

9. CJM 2011 (vol 63 pp. 1161)
 Neuwirth, Stefan; Ricard, Éric

Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group
We inspect the relationship between relative Fourier
multipliers on noncommutative LebesgueOrlicz spaces of a discrete
group $\varGamma$ and relative ToeplitzSchur multipliers on
SchattenvonNeumannOrlicz classes. Four applications are given:
lacunary sets, unconditional Schauder bases for the subspace of a
Lebesgue space determined by a given spectrum $\varLambda\subseteq\varGamma$, the
norm of the Hilbert transform and the Riesz projection on
SchattenvonNeumann classes with exponent a power of 2, and the norm of
Toeplitz Schur multipliers on SchattenvonNeumann classes with
exponent less than 1.
Keywords:Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional approximation property, Hilbert transform, Riesz projection Categories:47B49, 43A22, 43A46, 46B28 

10. CJM 2011 (vol 63 pp. 798)
 Daws, Matthew

Representing Multipliers of the Fourier Algebra on NonCommutative $L^p$ Spaces
We show that the multiplier algebra of the Fourier algebra on a
locally compact group $G$ can be isometrically represented on a direct
sum on noncommutative $L^p$ spaces associated with the right von
Neumann algebra of $G$. The resulting image is the idealiser of the
image of the Fourier algebra. If these spaces are given their
canonical operator space structure, then we get a completely isometric
representation of the completely bounded multiplier algebra. We make
a careful study of the noncommutative $L^p$ spaces we construct and
show that they are completely isometric to those considered recently
by Forrest, Lee, and Samei. We improve a result of theirs about module
homomorphisms. We suggest a definition of a FigaTalamancaHerz
algebra built out of these noncommutative $L^p$ spaces, say
$A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to
$L^1(G)$, generalising the abelian situation.
Keywords:multiplier, Fourier algebra, noncommutative $L^p$ space, complex interpolation Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52 

11. CJM 2010 (vol 62 pp. 961)
 Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan

Multiplicative Isometries and Isometric ZeroDivisors
For some Banach spaces of analytic functions in the unit disk
(weighted Bergman spaces, Bloch space, Dirichlettype spaces), the
isometric pointwise multipliers are found to be unimodular constants.
As a consequence, it is shown that none of those spaces have isometric
zerodivisors. Isometric coefficient multipliers are also
investigated.
Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlettype spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zerodivisors Categories:30H05, 46E15 

12. CJM 2008 (vol 60 pp. 1010)
 Galé, José E.; Miana, Pedro J.

$H^\infty$ Functional Calculus and MikhlinType Multiplier Conditions
Let $T$ be a sectorial operator. It is known that the existence of a
bounded (suitably scaled) $H^\infty$ calculus for $T$, on every
sector containing the positive halfline, is equivalent to the
existence of a bounded functional calculus on the Besov algebra
$\Lambda_{\infty,1}^\alpha(\R^+)$. Such an algebra
includes functions defined by Mikhlintype conditions and so the
Besov calculus can be seen as a result on multipliers for $T$. In
this paper, we use fractional derivation to analyse in detail the
relationship between $\Lambda_{\infty,1}^\alpha$ and Banach algebras
of Mikhlintype. As a result, we obtain a new version of the quoted
equivalence.
Keywords:functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, unbounded operators, quasimultipliers Categories:47A60, 47D03, 46J15, 26A33, 47L60, 47B48, 43A22 

13. CJM 2007 (vol 59 pp. 966)
 Forrest, Brian E.; Runde, Volker; Spronk, Nico

Operator Amenability of the Fourier Algebra in the $\cb$Multiplier Norm
Let $G$ be a locally compact group, and let $A_{\cb}(G)$ denote the
closure of $A(G)$, the Fourier algebra of $G$, in the space of completely
bounded multipliers of $A(G)$. If $G$ is a weakly amenable, discrete group
such that $\cstar(G)$ is residually finitedimensional, we show that
$A_{\cb}(G)$ is operator amenable. In particular,
$A_{\cb}(\free_2)$ is operator amenable even though $\free_2$, the free
group in two generators, is not an amenable group. Moreover, we show that
if $G$ is a discrete group such that $A_{\cb}(G)$ is operator amenable,
a closed ideal of $A(G)$ is weakly completely complemented in $A(G)$
if and only if it has an approximate identity bounded in the $\cb$multiplier
norm.
Keywords:$\cb$multiplier norm, Fourier algebra, operator amenability, weak amenability Categories:43A22, 43A30, 46H25, 46J10, 46J40, 46L07, 47L25 

14. CJM 2004 (vol 56 pp. 344)
15. CJM 2004 (vol 56 pp. 3)
 Amini, Massoud

Locally Compact Pro$C^*$Algebras
Let $X$ be a locally compact noncompact Hausdorff topological space. Consider
the algebras $C(X)$, $C_b(X)$, $C_0(X)$, and $C_{00}(X)$ of respectively arbitrary,
bounded, vanishing at infinity, and compactly supported continuous functions on $X$.
Of these, the second and third are $C^*$algebras, the fourth is a normed algebra,
whereas the first is only a topological algebra (it is indeed a pro$C^\ast$algebra).
The interesting fact about these algebras is that if one of them is given, the
others can be obtained using functional analysis tools. For instance, given the
$C^\ast$algebra $C_0(X)$, one can get the other three algebras by
$C_{00}(X)=K\bigl(C_0(X)\bigr)$, $C_b(X)=M\bigl(C_0(X)\bigr)$, $C(X)=\Gamma\bigl(
K(C_0(X))\bigr)$, where the right hand sides are the Pedersen ideal, the
multiplier algebra, and the unbounded multiplier algebra of the Pedersen ideal of
$C_0(X)$, respectively. In this article we consider the possibility of these
transitions for general $C^\ast$algebras. The difficult part is to start with a
pro$C^\ast$algebra $A$ and to construct a $C^\ast$algebra $A_0$ such that
$A=\Gamma\bigl(K(A_0)\bigr)$. The pro$C^\ast$algebras for which this is
possible are called {\it locally compact\/} and we have characterized them using
a concept similar to that of an approximate identity.
Keywords:pro$C^\ast$algebras, projective limit, multipliers of Pedersen's ideal Categories:46L05, 46M40 

16. CJM 2001 (vol 53 pp. 565)
 Hare, Kathryn E.; Sato, Enji

Spaces of Lorentz Multipliers
We study when the spaces of Lorentz multipliers from $L^{p,t}
\rightarrow L^{p,s}$ are distinct. Our main interest is the case when
$s
Keywords:multipliers, convolution operators, Lorentz spaces, Lorentzimproving multipliers Categories:43A22, 42A45, 46E30 

17. CJM 2001 (vol 53 pp. 592)
 Perera, Francesc

Ideal Structure of Multiplier Algebras of Simple $C^*$algebras With Real Rank Zero
We give a description of the monoid of Murrayvon Neumann equivalence
classes of projections for multiplier algebras of a wide class of
$\sigma$unital simple $C^\ast$algebras $A$ with real rank zero and stable
rank one. The lattice of ideals of this monoid, which is known to be
crucial for understanding the ideal structure of the multiplier
algebra $\mul$, is therefore analyzed. In important cases it is shown
that, if $A$ has finite scale then the quotient of $\mul$ modulo any
closed ideal $I$ that properly contains $A$ has stable rank one. The
intricacy of the ideal structure of $\mul$ is reflected in the fact
that $\mul$ can have uncountably many different quotients, each one
having uncountably many closed ideals forming a chain with respect to
inclusion.
Keywords:$C^\ast$algebra, multiplier algebra, real rank zero, stable rank, refinement monoid Categories:46L05, 46L80, 06F05 

18. CJM 1998 (vol 50 pp. 897)