CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword metric space

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM 2013 (vol 66 pp. 721)

Durand-Cartagena, E.; Ihnatsyeva, L.; Korte, R.; Szumańska, M.
On Whitney-type Characterization of Approximate Differentiability on Metric Measure Spaces
We study approximately differentiable functions on metric measure spaces admitting a Cheeger differentiable structure. The main result is a Whitney-type characterization of approximately differentiable functions in this setting. As an application, we prove a Stepanov-type theorem and consider approximate differentiability of Sobolev, $BV$ and maximal functions.

Keywords:approximate differentiability, metric space, strong measurable differentiable structure, Whitney theorem
Categories:26B05, 28A15, 28A75, 46E35

2. CJM 2012 (vol 65 pp. 757)

Delanoë, Philippe; Rouvière, François
Positively Curved Riemannian Locally Symmetric Spaces are Positively Squared Distance Curved
The squared distance curvature is a kind of two-point curvature the sign of which turned out crucial for the smoothness of optimal transportation maps on Riemannian manifolds. Positivity properties of that new curvature have been established recently for all the simply connected compact rank one symmetric spaces, except the Cayley plane. Direct proofs were given for the sphere, an indirect one via the Hopf fibrations) for the complex and quaternionic projective spaces. Here, we present a direct proof of a property implying all the preceding ones, valid on every positively curved Riemannian locally symmetric space.

Keywords:symmetric spaces, rank one, positive curvature, almost-positive $c$-curvature
Categories:53C35, 53C21, 53C26, 49N60

3. CJM 2012 (vol 65 pp. 222)

Sauer, N. W.
Distance Sets of Urysohn Metric Spaces
A metric space $\mathrm{M}=(M;\operatorname{d})$ is {\em homogeneous} if for every isometry $f$ of a finite subspace of $\mathrm{M}$ to a subspace of $\mathrm{M}$ there exists an isometry of $\mathrm{M}$ onto $\mathrm{M}$ extending $f$. The space $\mathrm{M}$ is {\em universal} if it isometrically embeds every finite metric space $\mathrm{F}$ with $\operatorname{dist}(\mathrm{F})\subseteq \operatorname{dist}(\mathrm{M})$. (With $\operatorname{dist}(\mathrm{M})$ being the set of distances between points in $\mathrm{M}$.) A metric space $\boldsymbol{U}$ is an {\em Urysohn} metric space if it is homogeneous, universal, separable and complete. (It is not difficult to deduce that an Urysohn metric space $\boldsymbol{U}$ isometrically embeds every separable metric space $\mathrm{M}$ with $\operatorname{dist}(\mathrm{M})\subseteq \operatorname{dist}(\boldsymbol{U})$.) The main results are: (1) A characterization of the sets $\operatorname{dist}(\boldsymbol{U})$ for Urysohn metric spaces $\boldsymbol{U}$. (2) If $R$ is the distance set of an Urysohn metric space and $\mathrm{M}$ and $\mathrm{N}$ are two metric spaces, of any cardinality with distances in $R$, then they amalgamate disjointly to a metric space with distances in $R$. (3) The completion of every homogeneous, universal, separable metric space $\mathrm{M}$ is homogeneous.

Keywords:partitions of metric spaces, Ramsey theory, metric geometry, Urysohn metric space, oscillation stability
Categories:03E02, 22F05, 05C55, 05D10, 22A05, 51F99

4. CJM 2009 (vol 61 pp. 351)

Graham, William; Hunziker, Markus
Multiplication of Polynomials on Hermitian Symmetric spaces and Littlewood--Richardson Coefficients
Let $K$ be a complex reductive algebraic group and $V$ a representation of $K$. Let $S$ denote the ring of polynomials on $V$. Assume that the action of $K$ on $S$ is multiplicity-free. If $\lambda$ denotes the isomorphism class of an irreducible representation of $K$, let $\rho_\lambda\from K \rightarrow GL(V_{\lambda})$ denote the corresponding irreducible representation and $S_\lambda$ the $\lambda$-isotypic component of $S$. Write $S_\lambda \cdot S_\mu$ for the subspace of $S$ spanned by products of $S_\lambda$ and $S_\mu$. If $V_\nu$ occurs as an irreducible constituent of $V_\lambda\otimes V_\mu$, is it true that $S_\nu\subseteq S_\lambda\cdot S_\mu$? In this paper, the authors investigate this question for representations arising in the context of Hermitian symmetric pairs. It is shown that the answer is yes in some cases and, using an earlier result of Ruitenburg, that in the remaining classical cases, the answer is yes provided that a conjecture of Stanley on the multiplication of Jack polynomials is true. It is also shown how the conjecture connects multiplication in the ring $S$ to the usual Littlewood--Richardson rule.

Keywords:Hermitian symmetric spaces, multiplicity free actions, Littlewood--Richardson coefficients, Jack polynomials
Categories:14L30, 22E46

5. CJM 2007 (vol 59 pp. 1135)

Björn, Anders; Björn, Jana; Shanmugalingam, Nageswari
Sobolev Extensions of Hölder Continuous and Characteristic Functions on Metric Spaces
We study when characteristic and H\"older continuous functions are traces of Sobolev functions on doubling metric measure spaces. We provide analytic and geometric conditions sufficient for extending characteristic and H\"older continuous functions into globally defined Sobolev functions.

Keywords:characteristic function, Newtonian function, metric space, resolutivity, Hölder continuous, Perron solution, $p$-harmonic, Sobolev extension, Whitney covering
Categories:46E35, 31C45

6. CJM 2002 (vol 54 pp. 1305)

Vulakh, L. Ya.
Continued Fractions Associated with $\SL_3 (\mathbf{Z})$ and Units in Complex Cubic Fields
Continued fractions associated with $\GL_3 (\mathbf{Z})$ are introduced and applied to find fundamental units in a two-parameter family of complex cubic fields.

Keywords:fundamental units, continued fractions, diophantine approximation, symmetric space
Categories:11R27, 11J70, 11J13

© Canadian Mathematical Society, 2014 : https://cms.math.ca/