CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword maximal Cohen--Macaulay module

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2008 (vol 60 pp. 379)

rgensen, Peter J\o
Finite Cohen--Macaulay Type and Smooth Non-Commutative Schemes
A commutative local Cohen--Macaulay ring $R$ of finite Cohen--Macaulay type is known to be an isolated singularity; that is, $\Spec(R) \setminus \{ \mathfrak {m} \}$ is smooth. This paper proves a non-commutative analogue. Namely, if $A$ is a (non-commutative) graded Artin--Schelter \CM\ algebra which is fully bounded Noetherian and has finite Cohen--Macaulay type, then the non-commutative projective scheme determined by $A$ is smooth.

Keywords:Artin--Schelter Cohen--Macaulay algebra, Artin--Schelter Gorenstein algebra, Auslander's theorem on finite Cohen--Macaulay type, Cohen--Macaulay ring, fully bounded Noetherian algebra, isolated singularity, maximal Cohen--Macaulay module, non-commutative
Categories:14A22, 16E65, 16W50

2. CJM 2007 (vol 59 pp. 332)

Leuschke, Graham J.
Endomorphism Rings of Finite Global Dimension
For a commutative local ring $R$, consider (noncommutative) $R$-algebras $\Lambda$ of the form $\Lambda = \operatorname{End}_R(M)$ where $M$ is a reflexive $R$-module with nonzero free direct summand. Such algebras $\Lambda$ of finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of singularities of $\operatorname{Spec} R$. For example, Van den Bergh has shown that a three-dimensional Gorenstein normal $\mathbb{C}$-algebra with isolated terminal singularities has a crepant resolution of singularities if and only if it has such an algebra $\Lambda$ with finite global dimension and which is maximal Cohen--Macaulay over $R$ (a ``noncommutative crepant resolution of singularities''). We produce algebras $\Lambda=\operatorname{End}_R(M)$ having finite global dimension in two contexts: when $R$ is a reduced one-dimensional complete local ring, or when $R$ is a Cohen--Macaulay local ring of finite Cohen--Macaulay type. If in the latter case $R$ is Gorenstein, then the construction gives a noncommutative crepant resolution of singularities in the sense of Van den Bergh.

Keywords:representation dimension, noncommutative crepant resolution, maximal Cohen--Macaulay modules
Categories:16G50, 16G60, 16E99

© Canadian Mathematical Society, 2014 : https://cms.math.ca/