CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword matrices

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM Online first

Abuaf, Roland; Boralevi, Ada
Orthogonal Bundles and Skew-Hamiltonian Matrices
Using properties of skew-Hamiltonian matrices and classic connectedness results, we prove that the moduli space $M_{ort}^0(r,n)$ of stable rank $r$ orthogonal vector bundles on $\mathbb{P}^2$, with Chern classes $(c_1,c_2)=(0,n)$, and trivial splitting on the general line, is smooth irreducible of dimension $(r-2)n-\binom{r}{2}$ for $r=n$ and $n \ge 4$, and $r=n-1$ and $n\ge 8$. We speculate that the result holds in greater generality.

Keywords:orthogonal vector bundles, moduli spaces, skew-Hamiltonian matrices
Categories:14J60, 15B99

2. CJM 2012 (vol 65 pp. 600)

Kroó, A.; Lubinsky, D. S.
Christoffel Functions and Universality in the Bulk for Multivariate Orthogonal Polynomials
We establish asymptotics for Christoffel functions associated with multivariate orthogonal polynomials. The underlying measures are assumed to be regular on a suitable domain - in particular this is true if they are positive a.e. on a compact set that admits analytic parametrization. As a consequence, we obtain asymptotics for Christoffel functions for measures on the ball and simplex, under far more general conditions than previously known. As another consequence, we establish universality type limits in the bulk in a variety of settings.

Keywords:orthogonal polynomials, random matrices, unitary ensembles, correlation functions, Christoffel functions
Categories:42C05, 42C99, 42B05, 60B20

3. CJM 2011 (vol 64 pp. 805)

Chapon, François; Defosseux, Manon
Quantum Random Walks and Minors of Hermitian Brownian Motion
Considering quantum random walks, we construct discrete-time approximations of the eigenvalues processes of minors of Hermitian Brownian motion. It has been recently proved by Adler, Nordenstam, and van Moerbeke that the process of eigenvalues of two consecutive minors of a Hermitian Brownian motion is a Markov process; whereas, if one considers more than two consecutive minors, the Markov property fails. We show that there are analog results in the noncommutative counterpart and establish the Markov property of eigenvalues of some particular submatrices of Hermitian Brownian motion.

Keywords:quantum random walk, quantum Markov chain, generalized casimir operators, Hermitian Brownian motion, diffusions, random matrices, minor process
Categories:46L53, 60B20, 14L24

4. CJM 2009 (vol 62 pp. 109)

Li, Chi-Kwong; Poon, Yiu-Tung
Sum of Hermitian Matrices with Given Eigenvalues: Inertia, Rank, and Multiple Eigenvalues
Let $A$ and $B$ be $n\times n$ complex Hermitian (or real symmetric) matrices with eigenvalues $a_1 \ge \dots \ge a_n$ and $b_1 \ge \dots \ge b_n$. All possible inertia values, ranks, and multiple eigenvalues of $A + B$ are determined. Extension of the results to the sum of $k$ matrices with $k > 2$ and connections of the results to other subjects such as algebraic combinatorics are also discussed.

Keywords:complex Hermitian matrices, real symmetric matrices, inertia, rank, multiple eigenvalues
Categories:15A42, 15A57

5. CJM 2008 (vol 60 pp. 1050)

Huang, Wen-ling; Semrl, Peter \v
Adjacency Preserving Maps on Hermitian Matrices
Hua's fundamental theorem of the geometry of hermitian matrices characterizes bijective maps on the space of all $n\times n$ hermitian matrices preserving adjacency in both directions. The problem of possible improvements has been open for a while. There are three natural problems here. Do we need the bijectivity assumption? Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only? Can we obtain such a characterization for maps acting between the spaces of hermitian matrices of different sizes? We answer all three questions for the complex hermitian matrices, thus obtaining the optimal structural result for adjacency preserving maps on hermitian matrices over the complex field.

Keywords:rank, adjacency preserving map, hermitian matrix, geometry of matrices
Categories:15A03, 15A04, 15A57, 15A99

6. CJM 2008 (vol 60 pp. 520)

Chen, Chang-Pao; Huang, Hao-Wei; Shen, Chun-Yen
Matrices Whose Norms Are Determined by Their Actions on Decreasing Sequences
Let $A=(a_{j,k})_{j,k \ge 1}$ be a non-negative matrix. In this paper, we characterize those $A$ for which $\|A\|_{E, F}$ are determined by their actions on decreasing sequences, where $E$ and $F$ are suitable normed Riesz spaces of sequences. In particular, our results can apply to the following spaces: $\ell_p$, $d(w,p)$, and $\ell_p(w)$. The results established here generalize ones given by Bennett; Chen, Luor, and Ou; Jameson; and Jameson and Lashkaripour.

Keywords:norms of matrices, normed Riesz spaces, weighted mean matrices, Nörlund mean matrices, summability matrices, matrices with row decreasing
Categories:15A60, 40G05, 47A30, 47B37, 46B42

7. CJM 2005 (vol 57 pp. 82)

Fallat, Shaun M.; Gekhtman, Michael I.
Jordan Structures of Totally Nonnegative Matrices
An $n \times n$ matrix is said to be totally nonnegative if every minor of $A$ is nonnegative. In this paper we completely characterize all possible Jordan canonical forms of irreducible totally nonnegative matrices. Our approach is mostly combinatorial and is based on the study of weighted planar diagrams associated with totally nonnegative matrices.

Keywords:totally nonnegative matrices, planar diagrams,, principal rank, Jordan canonical form
Categories:15A21, 15A48, 05C38

8. CJM 2002 (vol 54 pp. 571)

Li, Chi-Kwong; Poon, Yiu-Tung
Diagonals and Partial Diagonals of Sum of Matrices
Given a matrix $A$, let $\mathcal{O}(A)$ denote the orbit of $A$ under a certain group action such as \begin{enumerate}[(4)] \item[(1)] $U(m) \otimes U(n)$ acting on $m \times n$ complex matrices $A$ by $(U,V)*A = UAV^t$, \item[(2)] $O(m) \otimes O(n)$ or $\SO(m) \otimes \SO(n)$ acting on $m \times n$ real matrices $A$ by $(U,V)*A = UAV^t$, \item[(3)] $U(n)$ acting on $n \times n$ complex symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$, \item[(4)] $O(n)$ or $\SO(n)$ acting on $n \times n$ real symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$. \end{enumerate} Denote by $$ \mathcal{O}(A_1,\dots,A_k) = \{X_1 + \cdots + X_k : X_i \in \mathcal{O}(A_i), i = 1,\dots,k\} $$ the joint orbit of the matrices $A_1,\dots,A_k$. We study the set of diagonals or partial diagonals of matrices in $\mathcal{O}(A_1,\dots,A_k)$, {\it i.e.}, the set of vectors $(d_1,\dots,d_r)$ whose entries lie in the $(1,j_1),\dots,(r,j_r)$ positions of a matrix in $\mathcal{O}(A_1, \dots,A_k)$ for some distinct column indices $j_1,\dots,j_r$. In many cases, complete description of these sets is given in terms of the inequalities involving the singular values of $A_1,\dots,A_k$. We also characterize those extreme matrices for which the equality cases hold. Furthermore, some convexity properties of the joint orbits are considered. These extend many classical results on matrix inequalities, and answer some questions by Miranda. Related results on the joint orbit $\mathcal{O}(A_1,\dots,A_k)$ of complex Hermitian matrices under the action of unitary similarities are also discussed.

Keywords:orbit, group actions, unitary, orthogonal, Hermitian, (skew-)symmetric matrices, diagonal, singular values
Categories:15A42, 15A18

© Canadian Mathematical Society, 2014 : https://cms.math.ca/