Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 2005 (vol 57 pp. 897)
Representation of Banach Ideal Spaces and Factorization of Operators Representation theorems are proved for Banach ideal spaces with the Fatou property
which are built by the Calder{\'o}n--Lozanovski\u\i\ construction.
Factorization theorems for operators in spaces more general than the Lebesgue
$L^{p}$ spaces are investigated. It is natural to extend the Gagliardo
theorem on the Schur test and the Rubio de~Francia theorem on factorization of the
Muckenhoupt $A_{p}$ weights to reflexive Orlicz spaces. However, it turns out that for
the scales far from $L^{p}$-spaces this is impossible. For the concrete integral operators
it is shown that factorization theorems and the Schur test in some reflexive Orlicz spaces
are not valid. Representation theorems for the Calder{\'o}n--Lozanovski\u\i\ construction
are involved in the proofs.
Keywords:Banach ideal spaces, weighted spaces, weight functions,, CalderÃ³n--Lozanovski\u\i\ spaces, Orlicz spaces, representation of, spaces, uniqueness problem, positive linear operators, positive sublinear, operators, Schur test, factorization of operators, f Categories:46E30, 46B42, 46B70 |
2. CJM 2000 (vol 52 pp. 381)
Hardy Space Estimate for the Product of Singular Integrals $H^p$ estimate for the multilinear operators which are finite sums
of pointwise products of singular integrals and fractional
integrals is given. An application to Sobolev space and some
examples are also given.
Keywords:$H^p$ space, multilinear operator, singular integral, fractional integration, Sobolev space Category:42B20 |