Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword integral point

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2015 (vol 69 pp. 130)

Levin, Aaron; Wang, Julie Tzu-Yueh
On Non-Archimedean Curves Omitting Few Components and their Arithmetic Analogues
Let $\mathbf{k}$ be an algebraically closed field complete with respect to a non-Archimedean absolute value of arbitrary characteristic. Let $D_1,\dots, D_n$ be effective nef divisors intersecting transversally in an $n$-dimensional nonsingular projective variety $X$. We study the degeneracy of non-Archimedean analytic maps from $\mathbf{k}$ into $X\setminus \cup_{i=1}^nD_i$ under various geometric conditions. When $X$ is a rational ruled surface and $D_1$ and $D_2$ are ample, we obtain a necessary and sufficient condition such that there is no non-Archimedean analytic map from $\mathbf{k}$ into $X\setminus D_1 \cup D_2$. Using the dictionary between non-Archimedean Nevanlinna theory and Diophantine approximation that originated in earlier work with T. T. H. An, % we also study arithmetic analogues of these problems, establishing results on integral points on these varieties over $\mathbb{Z}$ or the ring of integers of an imaginary quadratic field.

Keywords:non-Archimedean Picard theorem, non-Archimedean analytic curves, integral points
Categories:11J97, 32P05, 32H25

2. CJM 2011 (vol 64 pp. 151)

Miller, Steven J.; Wong, Siman
Moments of the Rank of Elliptic Curves
Fix an elliptic curve $E/\mathbb{Q}$ and assume the Riemann Hypothesis for the $L$-function $L(E_D, s)$ for every quadratic twist $E_D$ of $E$ by $D\in\mathbb{Z}$. We combine Weil's explicit formula with techniques of Heath-Brown to derive an asymptotic upper bound for the weighted moments of the analytic rank of $E_D$. We derive from this an upper bound for the density of low-lying zeros of $L(E_D, s)$ that is compatible with the random matrix models of Katz and Sarnak. We also show that for any unbounded increasing function $f$ on $\mathbb{R}$, the analytic rank and (assuming in addition the Birch and Swinnerton-Dyer conjecture) the number of integral points of $E_D$ are less than $f(D)$ for almost all $D$.

Keywords:elliptic curve, explicit formula, integral point, low-lying zeros, quadratic twist, rank
Categories:11G05, 11G40

© Canadian Mathematical Society, 2017 :