CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword integrable system

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Manon, Christopher
Toric geometry of $SL_2(\mathbb{C})$ free group character varieties from outer space
Culler and Vogtmann defined a simplicial space $O(g)$ called outer space to study the outer automorphism group of the free group $F_g$. Using representation theoretic methods, we give an embedding of $O(g)$ into the analytification of $\mathcal{X}(F_g, SL_2(\mathbb{C})),$ the $SL_2(\mathbb{C})$ character variety of $F_g,$ reproving a result of Morgan and Shalen. Then we show that every point $v$ contained in a maximal cell of $O(g)$ defines a flat degeneration of $\mathcal{X}(F_g, SL_2(\mathbb{C}))$ to a toric variety $X(P_{\Gamma})$. We relate $\mathcal{X}(F_g, SL_2(\mathbb{C}))$ and $X(v)$ topologically by showing that there is a surjective, continuous, proper map $\Xi_v: \mathcal{X}(F_g, SL_2(\mathbb{C})) \to X(v)$. We then show that this map is a symplectomorphism on a dense, open subset of $\mathcal{X}(F_g, SL_2(\mathbb{C}))$ with respect to natural symplectic structures on $\mathcal{X}(F_g, SL_2(\mathbb{C}))$ and $X(v)$. In this way, we construct an integrable Hamiltonian system in $\mathcal{X}(F_g, SL_2(\mathbb{C}))$ for each point in a maximal cell of $O(g)$, and we show that each $v$ defines a topological decomposition of $\mathcal{X}(F_g, SL_2(\mathbb{C}))$ derived from the decomposition of $X(P_{\Gamma})$ by its torus orbits. Finally, we show that the valuations coming from the closure of a maximal cell in $O(g)$ all arise as divisorial valuations built from an associated projective compactification of $\mathcal{X}(F_g, SL_2(\mathbb{C})).$

Keywords:character variety, outer space, analytification, compactification, integrable system
Categories:14M25, 14T05, 14D20

2. CJM 1998 (vol 50 pp. 1119)

Anand, Christopher Kumar
Ward's solitons II: exact solutions
In a previous paper, we gave a correspondence between certain exact solutions to a \((2+1)\)-dimensional integrable Chiral Model and holomorphic bundles on a compact surface. In this paper, we use algebraic geometry to derive a closed-form expression for those solutions and show by way of examples how the algebraic data which parametrise the solution space dictates the behaviour of the solutions. Dans un article pr\'{e}c\'{e}dent, nous avons d\'{e}montr\'{e} que les solutions d'un mod\`{e}le chiral int\'{e}grable en dimension \( (2+1) \) correspondent aux fibr\'{e}s vectoriels holomorphes sur une surface compacte. Ici, nous employons la g\'{e}om\'{e}trie alg\'{e}brique dans une construction explicite des solutions. Nous donnons une formule matricielle et illustrons avec trois exemples la signification des invariants alg\'{e}briques pour le comportement physique des solutions.

Keywords:integrable system, chiral field, sigma model, soliton, monad, uniton, harmonic map
Category:35Q51

© Canadian Mathematical Society, 2016 : https://cms.math.ca/