CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword hyperplane arrangement

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2013 (vol 66 pp. 505)

Arapura, Donu
Hodge Theory of Cyclic Covers Branched over a Union of Hyperplanes
Suppose that $Y$ is a cyclic cover of projective space branched over a hyperplane arrangement $D$, and that $U$ is the complement of the ramification locus in $Y$. The first theorem implies that the Beilinson-Hodge conjecture holds for $U$ if certain multiplicities of $D$ are coprime to the degree of the cover. For instance this applies when $D$ is reduced with normal crossings. The second theorem shows that when $D$ has normal crossings and the degree of the cover is a prime number, the generalized Hodge conjecture holds for any toroidal resolution of $Y$. The last section contains some partial extensions to more general nonabelian covers.

Keywords:Hodge cycles, hyperplane arrangements
Category:14C30

2. CJM 2011 (vol 63 pp. 1038)

Cohen, D.; Denham, G.; Falk, M.; Varchenko, A.
Critical Points and Resonance of Hyperplane Arrangements
If $\Phi_\lambda$ is a master function corresponding to a hyperplane arrangement $\mathcal A$ and a collection of weights $\lambda$, we investigate the relationship between the critical set of $\Phi_\lambda$, the variety defined by the vanishing of the one-form $\omega_\lambda=\operatorname{d} \log \Phi_\lambda$, and the resonance of $\lambda$. For arrangements satisfying certain conditions, we show that if $\lambda$ is resonant in dimension $p$, then the critical set of $\Phi_\lambda$ has codimension at most $p$. These include all free arrangements and all rank $3$ arrangements.

Keywords:hyperplane arrangement, master function, resonant weights, critical set
Categories:32S22, 55N25, 52C35

© Canadian Mathematical Society, 2014 : https://cms.math.ca/