CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword homology

  Expand all        Collapse all Results 1 - 15 of 15

1. CJM 2014 (vol 67 pp. 152)

Lescop, Christine
On Homotopy Invariants of Combings of Three-manifolds
Combings of compact, oriented $3$-dimensional manifolds $M$ are homotopy classes of nowhere vanishing vector fields. The Euler class of the normal bundle is an invariant of the combing, and it only depends on the underlying Spin$^c$-structure. A combing is called torsion if this Euler class is a torsion element of $H^2(M;\mathbb Z)$. Gompf introduced a $\mathbb Q$-valued invariant $\theta_G$ of torsion combings on closed $3$-manifolds, and he showed that $\theta_G$ distinguishes all torsion combings with the same Spin$^c$-structure. We give an alternative definition for $\theta_G$ and we express its variation as a linking number. We define a similar invariant $p_1$ of combings for manifolds bounded by $S^2$. We relate $p_1$ to the $\Theta$-invariant, which is the simplest configuration space integral invariant of rational homology $3$-balls, by the formula $\Theta=\frac14p_1 + 6 \lambda(\hat{M})$ where $\lambda$ is the Casson-Walker invariant. The article also includes a self-contained presentation of combings for $3$-manifolds.

Keywords:Spin$^c$-structure, nowhere zero vector fields, first Pontrjagin class, Euler class, Heegaard Floer homology grading, Gompf invariant, Theta invariant, Casson-Walker invariant, perturbative expansion of Chern-Simons theory, configuration space integrals
Categories:57M27, 57R20, 57N10

2. CJM Online first

Köck, Bernhard; Tait, Joseph
Faithfulness of Actions on Riemann-Roch Spaces
Given a faithful action of a finite group $G$ on an algebraic curve~$X$ of genus $g_X\geq 2$, we give explicit criteria for the induced action of~$G$ on the Riemann-Roch space~$H^0(X,\mathcal{O}_X(D))$ to be faithful, where $D$ is a $G$-invariant divisor on $X$ of degree at least~$2g_X-2$. This leads to a concise answer to the question when the action of~$G$ on the space~$H^0(X, \Omega_X^{\otimes m})$ of global holomorphic polydifferentials of order $m$ is faithful. If $X$ is hyperelliptic, we furthermore provide an explicit basis of~$H^0(X, \Omega_X^{\otimes m})$. Finally, we give applications in deformation theory and in coding theory and we discuss the analogous problem for the action of~$G$ on the first homology $H_1(X, \mathbb{Z}/m\mathbb{Z})$ if $X$ is a Riemann surface.

Keywords:faithful action, Riemann-Roch space, polydifferential, hyperelliptic curve, equivariant deformation theory, Goppa code, homology
Categories:14H30, 30F30, 14L30, 14D15, 11R32

3. CJM 2014 (vol 66 pp. 961)

Baird, Thomas
Moduli Spaces of Vector Bundles over a Real Curve: $\mathbb Z/2$-Betti Numbers
Moduli spaces of real bundles over a real curve arise naturally as Lagrangian submanifolds of the moduli space of semi-stable bundles over a complex curve. In this paper, we adapt the methods of Atiyah-Bott's ``Yang-Mills over a Riemann Surface'' to compute $\mathbb Z/2$-Betti numbers of these spaces.

Keywords:cohomology of moduli spaces, holomorphic vector bundles
Categories:32L05, 14P25

4. CJM 2013 (vol 66 pp. 141)

Caillat-Gibert, Shanti; Matignon, Daniel
Existence of Taut Foliations on Seifert Fibered Homology $3$-spheres
This paper concerns the problem of existence of taut foliations among $3$-manifolds. Since the contribution of David Gabai, we know that closed $3$-manifolds with non-trivial second homology group admit a taut foliation. The essential part of this paper focuses on Seifert fibered homology $3$-spheres. The result is quite different if they are integral or rational but non-integral homology $3$-spheres. Concerning integral homology $3$-spheres, we can see that all but the $3$-sphere and the Poincaré $3$-sphere admit a taut foliation. Concerning non-integral homology $3$-spheres, we prove there are infinitely many which admit a taut foliation, and infinitely many without taut foliation. Moreover, we show that the geometries do not determine the existence of taut foliations on non-integral Seifert fibered homology $3$-spheres.

Keywords:homology 3-spheres, taut foliation, Seifert-fibered 3-manifolds
Categories:57M25, 57M50, 57N10, 57M15

5. CJM 2013 (vol 66 pp. 874)

Levandovskyy, Viktor; Shepler, Anne V.
Quantum Drinfeld Hecke Algebras
We consider finite groups acting on quantum (or skew) polynomial rings. Deformations of the semidirect product of the quantum polynomial ring with the acting group extend symplectic reflection algebras and graded Hecke algebras to the quantum setting over a field of arbitrary characteristic. We give necessary and sufficient conditions for such algebras to satisfy a Poincaré-Birkhoff-Witt property using the theory of noncommutative Gröbner bases. We include applications to the case of abelian groups and the case of groups acting on coordinate rings of quantum planes. In addition, we classify graded automorphisms of the coordinate ring of quantum 3-space. In characteristic zero, Hochschild cohomology gives an elegant description of the PBW conditions.

Keywords:skew polynomial rings, noncommutative Gröbner bases, graded Hecke algebras, symplectic reflection algebras, Hochschild cohomology
Categories:16S36, 16S35, 16S80, 16W20, 16Z05, 16E40

6. CJM 2013 (vol 65 pp. 843)

Jonsson, Jakob
3-torsion in the Homology of Complexes of Graphs of Bounded Degree
For $\delta \ge 1$ and $n \ge 1$, consider the simplicial complex of graphs on $n$ vertices in which each vertex has degree at most $\delta$; we identify a given graph with its edge set and admit one loop at each vertex. This complex is of some importance in the theory of semigroup algebras. When $\delta = 1$, we obtain the matching complex, for which it is known that there is $3$-torsion in degree $d$ of the homology whenever $\frac{n-4}{3} \le d \le \frac{n-6}{2}$. This paper establishes similar bounds for $\delta \ge 2$. Specifically, there is $3$-torsion in degree $d$ whenever $\frac{(3\delta-1)n-8}{6} \le d \le \frac{\delta (n-1) - 4}{2}$. The procedure for detecting torsion is to construct an explicit cycle $z$ that is easily seen to have the property that $3z$ is a boundary. Defining a homomorphism that sends $z$ to a non-boundary element in the chain complex of a certain matching complex, we obtain that $z$ itself is a non-boundary. In particular, the homology class of $z$ has order $3$.

Keywords:simplicial complex, simplicial homology, torsion group, vertex degree
Categories:05E45, 55U10, 05C07, 20K10

7. CJM 2012 (vol 65 pp. 467)

Wilson, Glen; Woodward, Christopher T.
Quasimap Floer Cohomology for Varying Symplectic Quotients
We show that quasimap Floer cohomology for varying symplectic quotients resolves several puzzles regarding displaceability of toric moment fibers. For example, we (i) present a compact Hamiltonian torus action containing an open subset of non-displaceable orbits and a codimension four singular set, partly answering a question of McDuff, and (ii) determine displaceability for most of the moment fibers of a symplectic ellipsoid.

Keywords:Floer cohomology, Hamiltonian displaceability
Category:53Dxx

8. CJM 2010 (vol 62 pp. 1246)

Chaput, P. E.; Manivel, L.; Perrin, N.
Quantum Cohomology of Minuscule Homogeneous Spaces III. Semi-Simplicity and Consequences
We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, specialized at $q=1$, is semisimple. This implies that complex conjugation defines an algebra automorphism of the quantum cohomology ring localized at the quantum parameter. We check that this involution coincides with the strange duality defined in our previous article. We deduce Vafa--Intriligator type formulas for the Gromov--Witten invariants.

Keywords:quantum cohomology, minuscule homogeneous spaces, Schubert calculus, quantum Euler class
Categories:14M15, 14N35

9. CJM 2008 (vol 60 pp. 1240)

Beliakova, Anna; Wehrli, Stephan
Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links
We define a family of formal Khovanov brackets of a colored link depending on two parameters. The isomorphism classes of these brackets are invariants of framed colored links. The Bar-Natan functors applied to these brackets produce Khovanov and Lee homology theories categorifying the colored Jones polynomial. Further, we study conditions under which framed colored link cobordisms induce chain transformations between our formal brackets. We conjecture that for special choice of parameters, Khovanov and Lee homology theories of colored links are functorial (up to sign). Finally, we extend the Rasmussen invariant to links and give examples where this invariant is a stronger obstruction to sliceness than the multivariable Levine--Tristram signature.

Keywords:Khovanov homology, colored Jones polynomial, slice genus, movie moves, framed cobordism
Categories:57M25, 57M27, 18G60

10. CJM 2008 (vol 60 pp. 892)

Neeb, Karl-Hermann; Wagemann, Friedrich
The Second Cohomology of Current Algebras of General Lie Algebras
Let $A$ be a unital commutative associative algebra over a field of characteristic zero, $\k$ a Lie algebra, and $\zf$ a vector space, considered as a trivial module of the Lie algebra $\gf := A \otimes \kf$. In this paper, we give a description of the cohomology space $H^2(\gf,\zf)$ in terms of easily accessible data associated with $A$ and $\kf$. We also discuss the topological situation, where $A$ and $\kf$ are locally convex algebras.

Keywords:current algebra, Lie algebra cohomology, Lie algebra homology, invariant bilinear form, central extension
Categories:17B56, 17B65

11. CJM 2007 (vol 59 pp. 981)

Jiang, Yunfeng
The Chen--Ruan Cohomology of Weighted Projective Spaces
In this paper we study the Chen--Ruan cohomology ring of weighted projective spaces. Given a weighted projective space ${\bf P}^{n}_{q_{0}, \dots, q_{n}}$, we determine all of its twisted sectors and the corresponding degree shifting numbers. The main result of this paper is that the obstruction bundle over any 3\nobreakdash-multi\-sector is a direct sum of line bundles which we use to compute the orbifold cup product. Finally we compute the Chen--Ruan cohomology ring of weighted projective space ${\bf P}^{5}_{1,2,2,3,3,3}$.

Keywords:Chen--Ruan cohomology, twisted sectors, toric varieties, weighted projective space, localization
Categories:14N35, 53D45

12. CJM 2007 (vol 59 pp. 36)

Develin, Mike; Martin, Jeremy L.; Reiner, Victor
Classification of Ding's Schubert Varieties: Finer Rook Equivalence
K.~Ding studied a class of Schubert varieties $X_\lambda$ in type A partial flag manifolds, indexed by integer partitions $\lambda$ and in bijection with dominant permutations. He observed that the Schubert cell structure of $X_\lambda$ is indexed by maximal rook placements on the Ferrers board $B_\lambda$, and that the integral cohomology groups $H^*(X_\lambda;\:\Zz)$, $H^*(X_\mu;\:\Zz)$ are additively isomorphic exactly when the Ferrers boards $B_\lambda, B_\mu$ satisfy the combinatorial condition of \emph{rook-equivalence}. We classify the varieties $X_\lambda$ up to isomorphism, distinguishing them by their graded cohomology rings with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the cohomology ring.

Keywords:Schubert variety, rook placement, Ferrers board, flag manifold, cohomology ring, nilpotence
Categories:14M15, 05E05

13. CJM 2005 (vol 57 pp. 1178)

Cutkosky, Steven Dale; Hà, Huy Tài; Srinivasan, Hema; Theodorescu, Emanoil
Asymptotic Behavior of the Length of Local Cohomology
Let $k$ be a field of characteristic 0, $R=k[x_1, \ldots, x_d]$ be a polynomial ring, and $\mm$ its maximal homogeneous ideal. Let $I \subset R$ be a homogeneous ideal in $R$. Let $\lambda(M)$ denote the length of an $R$-module $M$. In this paper, we show that $$ \lim_{n \to \infty} \frac{\l\bigl(H^0_{\mathfrak{m}}(R/I^n)\bigr)}{n^d} =\lim_{n \to \infty} \frac{\l\bigl(\Ext^d_R\bigl(R/I^n,R(-d)\bigr)\bigr)}{n^d} $$ always exists. This limit has been shown to be ${e(I)}/{d!}$ for $m$-primary ideals $I$ in a local Cohen--Macaulay ring, where $e(I)$ denotes the multiplicity of $I$. But we find that this limit may not be rational in general. We give an example for which the limit is an irrational number thereby showing that the lengths of these extention modules may not have polynomial growth.

Keywords:powers of ideals, local cohomology, Hilbert function, linear growth
Categories:13D40, 14B15, 13D45

14. CJM 2002 (vol 54 pp. 1319)

Yekutieli, Amnon
The Continuous Hochschild Cochain Complex of a Scheme
Let $X$ be a separated finite type scheme over a noetherian base ring $\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$ of topological $\mathcal{O}_X$-modules, called the complete Hochschild chain complex of $X$. To any $\mathcal{O}_X$-module $\mathcal{M}$---not necessarily quasi-coherent---we assign the complex $\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous Hochschild cochains with values in $\mathcal{M}$. Our first main result is that when $X$ is smooth over $\mathbb{K}$ there is a functorial isomorphism $$ \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R \mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) $$ in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where $X^2 := X \times_{\mathbb{K}} X$. The second main result is that if $X$ is smooth of relative dimension $n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps $\pi \colon \widehat{\mathcal{C}}^{-q} (X) \to \Omega^q_{X/ \mathbb{K}}$ induce a quasi-isomorphism $$ \mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/ \mathbb{K}} [q], \mathcal{M} \Bigr) \to \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr). $$ When $\mathcal{M} = \mathcal{O}_X$ this is the quasi-isomorphism underlying the Kontsevich Formality Theorem. Combining the two results above we deduce a decomposition of the global Hochschild cohomology $$ \Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong \bigoplus_q \H^{i-q} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X} \mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M} \Bigr), $$ where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.

Keywords:Hochschild cohomology, schemes, derived categories
Categories:16E40, 14F10, 18G10, 13H10

15. CJM 1998 (vol 50 pp. 581)

Kamiyama, Yasuhiko
The homology of singular polygon spaces
Let $M_n$ be the variety of spatial polygons $P= (a_1, a_2, \dots, a_n)$ whose sides are vectors $a_i \in \text{\bf R}^3$ of length $\vert a_i \vert=1 \; (1 \leq i \leq n),$ up to motion in $\text{\bf R}^3.$ It is known that for odd $n$, $M_n$ is a smooth manifold, while for even $n$, $M_n$ has cone-like singular points. For odd $n$, the rational homology of $M_n$ was determined by Kirwan and Klyachko [6], [9]. The purpose of this paper is to determine the rational homology of $M_n$ for even $n$. For even $n$, let ${\tilde M}_n$ be the manifold obtained from $M_n$ by the resolution of the singularities. Then we also determine the integral homology of ${\tilde M}_n$.

Keywords:singular polygon space, homology
Categories:14D20, 57N65

© Canadian Mathematical Society, 2014 : https://cms.math.ca/