Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 2008 (vol 60 pp. 1050)
Adjacency Preserving Maps on Hermitian Matrices Hua's fundamental theorem of the geometry of hermitian matrices
characterizes bijective maps on the space of all $n\times n$
hermitian matrices preserving adjacency in both directions.
The problem of possible improvements
has been open for a while. There are three natural problems here.
Do we need the bijectivity assumption? Can we replace the
assumption of preserving adjacency in both directions by the
weaker assumption of preserving adjacency in one direction only?
Can we obtain such a characterization for maps acting between the
spaces of hermitian matrices of different sizes? We answer all
three questions for the complex hermitian matrices, thus obtaining
the optimal structural result for adjacency preserving maps on
hermitian matrices over the complex field.
Keywords:rank, adjacency preserving map, hermitian matrix, geometry of matrices Categories:15A03, 15A04, 15A57, 15A99 |
2. CJM 2003 (vol 55 pp. 91)
Some Convexity Features Associated with Unitary Orbits Let $\mathcal{H}_n$ be the real linear space of $n\times n$ complex
Hermitian matrices. The unitary (similarity) orbit $\mathcal{U}
(C)$ of $C \in \mathcal{H}_n$ is the collection of all matrices
unitarily similar to $C$. We characterize those $C \in \mathcal{H}_n$
such that every matrix in the convex hull of $\mathcal{U}(C)$ can
be written as the average of two matrices in $\mathcal{U}(C)$. The
result is used to study spectral properties of submatrices of
matrices in $\mathcal{U}(C)$, the convexity of images of $\mathcal{U}
(C)$ under linear transformations, and some related questions
concerning the joint $C$-numerical range of Hermitian matrices.
Analogous results on real symmetric matrices are also discussed.
Keywords:Hermitian matrix, unitary orbit, eigenvalue, joint numerical range Categories:15A60, 15A42 |