Expand all Collapse all | Results 1 - 25 of 34 |
1. CJM 2014 (vol 66 pp. 993)
Expression d'un facteur epsilon de paire par une formule intÃ©grale Let $E/F$ be a quadratic extension of $p$-adic fields and
let $d$, $m$ be nonnegative integers of distinct parities. Fix
admissible irreducible tempered representations $\pi$ and $\sigma$ of
$GL_d(E)$ and $GL_m(E)$ respectively. We assume that $\pi$ and
$\sigma$ are conjugate-dual. That is to say $\pi\simeq \pi^{\vee,c}$
and $\sigma\simeq \sigma^{\vee,c}$ where $c$ is the non trivial
$F$-automorphism of $E$. This implies, we can extend $\pi$ to an
unitary representation $\tilde{\pi}$ of a nonconnected group
$GL_d(E)\rtimes \{1,\theta\}$. Define $\tilde{\sigma}$ the same
way. We state and prove an integral formula for
$\epsilon(1/2,\pi\times \sigma,\psi_E)$ involving the characters of
$\tilde{\pi}$ and $\tilde{\sigma}$. This formula is related to the
local Gan-Gross-Prasad conjecture for unitary groups.
Keywords:epsilon factor, twisted groups Categories:22E50, 11F85 |
2. CJM Online first
On a sumset conjecture of ErdÅs ErdÅs conjectured that for any set $A\subseteq \mathbb{N}$
with positive
lower asymptotic density, there are infinite sets $B,C\subseteq
\mathbb{N}$
such that $B+C\subseteq A$. We verify ErdÅs' conjecture in
the case that $A$ has Banach density exceeding $\frac{1}{2}$.
As a consequence, we prove that, for $A\subseteq \mathbb{N}$
with
positive Banach density (a much weaker assumption than positive
lower density), we can find infinite $B,C\subseteq \mathbb{N}$
such
that $B+C$ is contained in the union of $A$ and a translate of
$A$. Both of the aforementioned
results are generalized to arbitrary countable
amenable groups. We also provide a positive solution to ErdÅs'
conjecture for subsets of the natural numbers that are pseudorandom.
Keywords:sumsets of integers, asymptotic density, amenable groups, nonstandard analysis Categories:11B05, 11B13, 11P70, 28D15, 37A45 |
3. CJM Online first
Unitary Eigenvarieties at Isobaric Points In this article we
study the geometry of the eigenvarieties of unitary groups at points
corresponding to tempered non-stable representations with an
anti-ordinary (a.k.a evil) refinement. We prove that, except in the
case the Galois representation attached to the automorphic form is a
sum of characters, the eigenvariety is non-smooth at such a point,
and that (under some additional hypotheses) its tangent space is big
enough to account for all the relevant Selmer group. We also study the
local reducibility locus
at those points, proving that in general, in contrast with the case of
the eigencurve, it is a proper subscheme of the fiber of the
eigenvariety over the weight space.
Keywords:eigenvarieties, Galois representations, Selmer groups |
4. CJM Online first
A Free Product Formula for the Sofic Dimension It is proved that if $G=G_1*_{G_3}G_2$ is free product of probability
measure preserving $s$-regular ergodic discrete groupoids amalgamated
over an amenable subgroupoid $G_3$, then the sofic dimension $s(G)$
satisfies the equality
\[
s(G)=\mathfrak{h}(G_1^0)s(G_1)+\mathfrak{h}(G_2^0)s(G_2)-\mathfrak{h}(G_3^0)s(G_3)
\]
where $\mathfrak{h}$ is the normalized Haar measure on $G$.
Keywords:sofic groups, dynamical systems, orbit equivalence, free entropy Category:20E06 |
5. CJM Online first
Geometric Spectra and Commensurability The work of Reid, Chinburg-Hamilton-Long-Reid,
Prasad-Rapinchuk, and the author with Reid have demonstrated that
geodesics or totally geodesic submanifolds can sometimes be used to
determine the commensurability class of an arithmetic manifold. The
main results of this article show that generalizations of these
results to other arithmetic manifolds will require a wide range of
data. Specifically, we prove that certain incommensurable arithmetic
manifolds arising from the semisimple Lie groups of the form
$(\operatorname{SL}(d,\mathbf{R}))^r \times
(\operatorname{SL}(d,\mathbf{C}))^s$ have the same commensurability
classes of totally geodesic submanifolds coming from a fixed
field. This construction is algebraic and shows the failure of
determining, in general, a central simple algebra from subalgebras
over a fixed field. This, in turn, can be viewed in terms of forms of
$\operatorname{SL}_d$ and the failure of determining the form via certain classes of
algebraic subgroups.
Keywords:arithmetic groups, Brauer groups, arithmetic equivalence, locally symmetric manifolds Category:20G25 |
6. CJM Online first
Symplectic Degenerate Flag Varieties A simple finite dimensional module $V_\lambda$ of a simple complex
algebraic group $G$ is naturally endowed with a filtration induced by the PBW-filtration
of $U(\mathrm{Lie}\, G)$. The associated graded space $V_\lambda^a$ is a module
for the group $G^a$, which can be roughly described as a semi-direct product of a
Borel subgroup of $G$ and a large commutative unipotent group $\mathbb{G}_a^M$. In analogy
to the flag variety $\mathcal{F}_\lambda=G.[v_\lambda]\subset \mathbb{P}(V_\lambda)$,
we call the closure
$\overline{G^a.[v_\lambda]}\subset \mathbb{P}(V_\lambda^a)$
of the $G^a$-orbit through the highest weight line the degenerate flag variety $\mathcal{F}^a_\lambda$.
In general this is a
singular variety, but we conjecture that it has many nice properties similar to
that of Schubert varieties. In this paper we consider the case of $G$ being the symplectic group.
The symplectic case is important for the conjecture
because it is the first known case where even for fundamental weights $\omega$ the varieties
$\mathcal{F}^a_\omega$ differ from $\mathcal{F}_\omega$. We give an explicit
construction of the varieties $Sp\mathcal{F}^a_\lambda$ and construct desingularizations,
similar to the Bott-Samelson resolutions in the classical case. We prove that $Sp\mathcal{F}^a_\lambda$
are normal locally complete intersections with terminal and rational singularities.
We also show that these varieties are Frobenius split. Using the above mentioned results, we
prove an analogue of the Borel-Weil theorem and obtain a $q$-character formula
for the characters of irreducible $Sp_{2n}$-modules via the Atiyah-Bott-Lefschetz fixed
points formula.
Keywords:Lie algebras, flag varieties, symplectic groups, representations Categories:14M15, 22E46 |
7. CJM Online first
Types et contragrÃ©dientes Soit $\mathrm{G}$ un groupe rÃ©ductif $p$-adique, et soit $\mathrm{R}$
un corps algÃ©briquement clos.
Soit $\pi$ une reprÃ©sentation lisse de $\mathrm{G}$ dans un espace
vectoriel $\mathrm{V}$ sur
$\mathrm{R}$.
Fixons un sous-groupe ouvert et compact $\mathrm{K}$ de $\mathrm{G}$ et une reprÃ©sentation
lisse irrÃ©ductible $\tau$ de $\mathrm{K}$ dans un espace vectoriel
$\mathrm{W}$ de dimension
finie sur $\mathrm{R}$.
Sur l'espace $\mathrm{Hom}_{\mathrm{K}(\mathrm{W},\mathrm{V})}$ agit l'algÃ¨bre
d'entrelacement $\mathscr{H}(\mathrm{G},\mathrm{K},\mathrm{W})$.
Nous examinons la compatibilitÃ© de ces constructions avec le passage aux
reprÃ©sentations contragrÃ©dientes $\mathrm{V}^Äe$ et $\mathrm{W}^Äe$, et donnons en
particulier des conditions sur $\mathrm{W}$ ou sur la caractÃ©ristique
de $\mathrm{R}$ pour que
le comportement soit semblable au cas des reprÃ©sentations complexes.
Nous prenons un point de vue abstrait, n'utilisant que des propriÃ©tÃ©s
gÃ©nÃ©rales de $\mathrm{G}$.
Nous terminons par une application Ã la thÃ©orie des types pour le groupe
$\mathrm{GL}_n$ et ses formes intÃ©rieures sur un corps local non archimÃ©dien.
Keywords:modular representations of p-adic reductive groups, types, contragredient, intertwining Category:22E50 |
8. CJM Online first
Motion in a Symmetric Potential on the Hyperbolic Plane We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is the analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.
Keywords:Hamiltonian systems with symmetry, symmetries, non-compact symmetry groups, singular reduction Categories:37J15, 70H33, 70F99, 37C80, 34C14, , 20G20 |
9. CJM 2013 (vol 66 pp. 241)
Transfert du pseudo-coefficient de Kottwitz et formules de caractÃ¨re pour la sÃ©rie discrÃ¨te de $\mathrm{GL}(N)$ sur un corps local |
Transfert du pseudo-coefficient de Kottwitz et formules de caractÃ¨re pour la sÃ©rie discrÃ¨te de $\mathrm{GL}(N)$ sur un corps local Soit $G$ le groupe $\mathrm{GL}(N,F)$, oÃ¹ $F$ est un corps
localement compact et non archimÃ©dien.
En utilisant la thÃ©orie des types simples de Bushnell et Kutzko,
ainsi qu'une idÃ©e originale d'Henniart, nous construisons des pseudo-coefficients
explicites pour les reprÃ©sentations de la sÃ©rie discrÃ¨te de $G$.
Comme application, nous en dÃ©duisons des formules
inÃ©dites pour la valeur du charactÃ¨re d'Harish-Chandra de certaines
telles reprÃ©sentations en certains Ã©lÃ©ments elliptiques
rÃ©guliers.
Keywords:reductive p-adic groups , discrete series, Harish-Chandra character, pseudo-coefficient Category:22E50 |
10. CJM 2012 (vol 65 pp. 82)
The Ranks of the Homotopy Groups of a Finite Dimensional Complex Let $X$ be an
$n$-dimensional, finite, simply connected CW complex and set
$\alpha_X =\limsup_i \frac{\log\mbox{ rank}\, \pi_i(X)}{i}$. When
$0\lt \alpha_X\lt \infty$, we give upper and lower bound for $
\sum_{i=k+2}^{k+n} \textrm{rank}\, \pi_i(X) $ for $k$ sufficiently
large. We show also for any $r$ that $\alpha_X$ can be estimated
from the integers rk$\,\pi_i(X)$, $i\leq nr$ with an error bound
depending explicitly on $r$.
Keywords:homotopy groups, graded Lie algebra, exponential growth, LS category Categories:55P35, 55P62, , , , 17B70 |
11. CJM 2012 (vol 65 pp. 1043)
Convolution of Trace Class Operators over Locally Compact Quantum Groups We study locally compact quantum groups $\mathbb{G}$ through the
convolution algebras $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})),
\triangleright)$. We prove that the reduced quantum group
$C^*$-algebra $C_0(\mathbb{G})$ can be recovered from the convolution
$\triangleright$ by showing that the right $T(L_2(\mathbb{G}))$-module
$\langle K(L_2(\mathbb{G}) \triangleright T(L_2(\mathbb{G}))\rangle$ is
equal to $C_0(\mathbb{G})$. On the other hand, we show that the left
$T(L_2(\mathbb{G}))$-module $\langle T(L_2(\mathbb{G}))\triangleright
K(L_2(\mathbb{G})\rangle$ is isomorphic to the reduced crossed product
$C_0(\widehat{\mathbb{G}}) \,_r\!\ltimes C_0(\mathbb{G})$, and hence is
a much larger $C^*$-subalgebra of $B(L_2(\mathbb{G}))$.
We establish a natural isomorphism between the completely bounded
right multiplier algebras of $L_1(\mathbb{G})$ and
$(T(L_2(\mathbb{G})), \triangleright)$, and settle two invariance
problems associated with the representation theorem of
Junge-Neufang-Ruan (2009). We characterize regularity and discreteness
of the quantum group $\mathbb{G}$ in terms of continuity properties of
the convolution $\triangleright$ on $T(L_2(\mathbb{G}))$. We prove
that if $\mathbb{G}$ is semi-regular, then the space
$\langle T(L_2(\mathbb{G}))\triangleright B(L_2(\mathbb{G}))\rangle$ of right
$\mathbb{G}$-continuous operators on $L_2(\mathbb{G})$, which was
introduced by Bekka (1990) for $L_{\infty}(G)$, is a unital $C^*$-subalgebra
of $B(L_2(\mathbb{G}))$. In the representation framework formulated by
Neufang-Ruan-Spronk (2008) and Junge-Neufang-Ruan, we show that the
dual properties of compactness and discreteness can be characterized
simultaneously via automatic normality of quantum group bimodule maps
on $B(L_2(\mathbb{G}))$. We also characterize some commutation
relations of completely bounded multipliers of $(T(L_2(\mathbb{G})),
\triangleright)$ over $B(L_2(\mathbb{G}))$.
Keywords:locally compact quantum groups and associated Banach algebras Categories:22D15, 43A30, 46H05 |
12. CJM 2012 (vol 65 pp. 66)
On Flag Curvature of Homogeneous Randers Spaces In this paper we give an explicit formula for the flag curvature of
homogeneous Randers spaces of Douglas type and apply this formula to
obtain some interesting results. We first deduce an explicit formula
for the flag curvature of an arbitrary left invariant Randers metric
on a two-step nilpotent Lie group. Then we obtain a classification of
negatively curved homogeneous Randers spaces of Douglas type. This
results, in particular, in many examples of homogeneous non-Riemannian
Finsler spaces with negative flag curvature. Finally, we prove a
rigidity result that a homogeneous Randers space of Berwald type whose
flag curvature is everywhere nonzero must be Riemannian.
Keywords:homogeneous Randers manifolds, flag curvature, Douglas spaces, two-step nilpotent Lie groups Categories:22E46, 53C30 |
13. CJM 2011 (vol 64 pp. 1075)
A Stochastic Difference Equation with Stationary Noise on Groups We consider the stochastic difference equation $$\eta _k = \xi _k
\phi (\eta _{k-1}), \quad k \in \mathbb Z $$ on a locally compact group $G$
where $\phi$ is an automorphism of $G$, $\xi _k$ are given $G$-valued
random variables and $\eta _k$ are unknown $G$-valued random variables.
This equation was considered by Tsirelson and Yor on
one-dimensional torus. We consider the case when $\xi _k$ have a
common law $\mu$ and prove that if $G$ is a distal group and $\phi$
is a distal automorphism of $G$ and if the equation has a solution,
then extremal solutions of the equation are in one-one
correspondence with points on the coset space $K\backslash G$ for
some compact subgroup $K$ of $G$ such that $\mu$ is supported on
$Kz= z\phi (K)$ for any $z$ in the support of $\mu$. We also provide
a necessary and sufficient condition for the existence of solutions
to the equation.
Keywords:dissipating, distal automorphisms, probability measures, pointwise distal groups, shifted convolution powers Categories:60B15, 60G20 |
14. CJM 2011 (vol 64 pp. 588)
Level Raising and Anticyclotomic Selmer Groups for Hilbert Modular Forms of Weight Two In this article we refine the method of Bertolini and Darmon
and prove several finiteness results for
anticyclotomic Selmer groups of Hilbert modular forms of parallel
weight two.
Keywords:Hilbert modular forms, Selmer groups, Shimura curves Categories:11G40, 11F41, 11G18 |
15. CJM 2011 (vol 64 pp. 481)
Some Functional Inequalities on Polynomial Volume Growth Lie Groups In this article we study some Sobolev-type inequalities on polynomial volume growth Lie groups.
We show in particular that improved Sobolev inequalities can be extended to this general framework
without the use of the Littlewood-Paley decomposition.
Keywords:Sobolev inequalities, polynomial volume growth Lie groups Category:22E30 |
16. CJM 2011 (vol 63 pp. 1058)
$S_3$-covers of Schemes We analyze flat $S_3$-covers of schemes, attempting to create
structures parallel to those found in the abelian and triple cover
theories. We use an initial local analysis as a guide in finding a
global description.
Keywords:nonabelian groups, permutation group, group covers, schemes Category:14L30 |
17. CJM 2011 (vol 63 pp. 481)
The Ample Cone for a K3 Surface
In this paper, we give several pictorial fractal
representations of the ample or KÃ¤hler cone for surfaces in a
certain class of $K3$ surfaces. The class includes surfaces
described by smooth $(2,2,2)$ forms in ${\mathbb P^1\times\mathbb P^1\times \mathbb P^1}$ defined over a
sufficiently large number field $K$ that have a line parallel to
one of the axes and have Picard number four. We relate the
Hausdorff dimension of this fractal to the asymptotic growth of
orbits of curves under the action of the surface's group of
automorphisms. We experimentally estimate the Hausdorff dimension
of the fractal to be $1.296 \pm .010$.
Keywords:Fractal, Hausdorff dimension, K3 surface, Kleinian groups, dynamics Categories:14J28, , , , 14J50, 11D41, 11D72, 11H56, 11G10, 37F35, 37D05 |
18. CJM 2010 (vol 62 pp. 1116)
Degenerate p-Laplacian Operators and Hardy Type Inequalities on
H-Type Groups Let $\mathbb G$ be a step-two nilpotent group of H-type with Lie algebra $\mathfrak G=V\oplus \mathfrak t$. We define a class of vector fields $X=\{X_j\}$ on $\mathbb G$ depending on a real parameter $k\ge 1$, and we consider the corresponding $p$-Laplacian operator $L_{p,k} u= \operatorname{div}_X (|\nabla_{X} u|^{p-2} \nabla_X u)$. For $k=1$ the vector fields $X=\{X_j\}$ are the left invariant vector fields corresponding to an orthonormal basis of $V$; for $\mathbb G$ being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator $L_{p,k}$ and as an application, we get a Hardy type inequality associated with $X$.
Keywords:fundamental solutions, degenerate Laplacians, Hardy inequality, H-type groups Categories:35H30, 26D10, 22E25 |
19. CJM 2009 (vol 62 pp. 34)
Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$-adic Field |
Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$-adic Field We decompose the restriction of ramified principal series
representations of the $p$-adic group $\mathrm{GL}(3,\mathrm{k})$ to its
maximal compact subgroup $K=\mathrm{GL}(3,R)$. Its decomposition is
dependent on the degree of ramification of the inducing characters and
can be characterized in terms of filtrations of the Iwahori subgroup
in $K$. We establish several irreducibility results and illustrate
the decomposition with some examples.
Keywords:principal series representations, branching rules, maximal compact subgroups, representations of $p$-adic groups Categories:20G25, 20G05 |
20. CJM 2009 (vol 61 pp. 1300)
Monodromy Groups and Self-Invariance For every polytope $\mathcal{P}$ there is the universal regular
polytope of the same rank as $\mathcal{P}$ corresponding to the
Coxeter group $\mathcal{C} =[\infty, \dots, \infty]$. For a given
automorphism $d$ of $\mathcal{C}$, using monodromy groups, we
construct a combinatorial structure $\mathcal{P}^d$. When
$\mathcal{P}^d$ is a polytope isomorphic to $\mathcal{P}$ we say that
$\mathcal{P}$ is self-invariant with respect to $d$, or
$d$-invariant. We develop algebraic tools for investigating these
operations on polytopes, and in particular give a criterion on the
existence of a $d$\nobreakdash-auto\-morphism of a given order. As an application,
we analyze properties of self-dual edge-transitive polyhedra and
polyhedra with two flag-orbits. We investigate properties of medials
of such polyhedra. Furthermore, we give an example of a self-dual
equivelar polyhedron which contains no polarity (duality of order
2). We also extend the concept of Petrie dual to higher dimensions,
and we show how it can be dealt with using self-invariance.
Keywords:maps, abstract polytopes, self-duality, monodromy groups, medials of polyhedra Categories:51M20, 05C25, 05C10, 05C30, 52B70 |
21. CJM 2009 (vol 61 pp. 382)
Unit Elements in the Double Dual of a Subalgebra of the Fourier Algebra $A(G)$ Let $\mathcal{A}$ be a Banach algebra with a bounded right
approximate identity and let $\mathcal B$ be a closed ideal of
$\mathcal A$. We study the relationship between the right identities
of the double duals ${\mathcal B}^{**}$ and ${\mathcal A}^{**}$ under
the Arens product. We show that every right identity of ${\mathcal
B}^{**}$ can be extended to a right identity of ${\mathcal A}^{**}$ in
some sense. As a consequence, we answer a question of Lau and
\"Ulger, showing that for the Fourier algebra $A(G)$ of a locally
compact group $G$, an element $\phi \in A(G)^{**}$ is in $A(G)$ if and
only if $A(G) \phi \subseteq A(G)$ and $E \phi = \phi $ for all right
identities $E $ of $A(G)^{**}$. We also prove some results about the
topological centers of ${\mathcal B}^{**}$ and ${\mathcal A}^{**}$.
Keywords:Locally compact groups, amenable groups, Fourier algebra, identity, Arens product, topological center Category:43A07 |
22. CJM 2009 (vol 61 pp. 124)
Characterizing Complete Erd\H os Space The space now known as {\em complete Erd\H os
space\/} $\cerdos$ was introduced by Paul Erd\H os in 1940 as the
closed subspace of the Hilbert space $\ell^2$ consisting of all
vectors such that every coordinate is in the convergent sequence
$\{0\}\cup\{1/n:n\in\N\}$. In a solution to a problem posed by Lex G.
Oversteegen we present simple and useful topological
characterizations of $\cerdos$.
As an application we determine the class
of factors of $\cerdos$. In another application we determine
precisely which of the spaces that can be constructed in the Banach
spaces $\ell^p$ according to the `Erd\H os method' are homeomorphic
to $\cerdos$. A novel application states that if $I$ is a
Polishable $F_\sigma$-ideal on $\omega$, then $I$ with the Polish
topology is homeomorphic to either $\Z$, the Cantor set $2^\omega$,
$\Z\times2^\omega$, or $\cerdos$. This last result answers a
question that was asked
by Stevo Todor{\v{c}}evi{\'c}.
Keywords:Complete Erd\H os space, Lelek fan, almost zero-dimensional, nowhere zero-dimensional, Polishable ideals, submeasures on $\omega$, $\R$-trees, line-free groups in Banach spaces Categories:28C10, 46B20, 54F65 |
23. CJM 2008 (vol 60 pp. 1001)
Isometric Group Actions on Hilbert Spaces: Structure of Orbits Our main result is that a finitely generated nilpotent group has
no isometric action on an infinite-dimensional Hilbert space with
dense orbits. In contrast, we construct such an action with a
finitely generated metabelian group.
Keywords:affine actions, Hilbert spaces, minimal actions, nilpotent groups Categories:22D10, 43A35, 20F69 |
24. CJM 2008 (vol 60 pp. 1010)
$H^\infty$ Functional Calculus and Mikhlin-Type Multiplier Conditions Let $T$ be a sectorial operator. It is known that the existence of a
bounded (suitably scaled) $H^\infty$ calculus for $T$, on every
sector containing the positive half-line, is equivalent to the
existence of a bounded functional calculus on the Besov algebra
$\Lambda_{\infty,1}^\alpha(\R^+)$. Such an algebra
includes functions defined by Mikhlin-type conditions and so the
Besov calculus can be seen as a result on multipliers for $T$. In
this paper, we use fractional derivation to analyse in detail the
relationship between $\Lambda_{\infty,1}^\alpha$ and Banach algebras
of Mikhlin-type. As a result, we obtain a new version of the quoted
equivalence.
Keywords:functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, unbounded operators, quasimultipliers Categories:47A60, 47D03, 46J15, 26A33, 47L60, 47B48, 43A22 |
25. CJM 2007 (vol 59 pp. 1301)
Strichartz Inequalities for the Wave Equation with the Full Laplacian on the Heisenberg Group We prove dispersive and Strichartz inequalities for the solution of the wave
equation related to the full
Laplacian on the Heisenberg group, by means of Besov spaces defined by a
Littlewood--Paley
decomposition related to the spectral resolution of the full Laplacian.
This requires a careful
analysis due also to the non-homogeneous nature of the full Laplacian.
This result has to be compared to a previous one by Bahouri, G\'erard
and Xu concerning the solution of the wave equation related to
the Kohn Laplacian.
Keywords:nilpotent and solvable Lie groups, smoothness and regularity of solutions of PDEs Categories:22E25, 35B65 |