1. CJM 2010 (vol 62 pp. 1116)
 Jin, Yongyang; Zhang, Genkai

Degenerate pLaplacian Operators and Hardy Type Inequalities on
HType Groups
Let $\mathbb G$ be a steptwo nilpotent group of Htype with Lie algebra $\mathfrak G=V\oplus \mathfrak t$. We define a class of vector fields $X=\{X_j\}$ on $\mathbb G$ depending on a real parameter $k\ge 1$, and we consider the corresponding $p$Laplacian operator $L_{p,k} u= \operatorname{div}_X (\nabla_{X} u^{p2} \nabla_X u)$. For $k=1$ the vector fields $X=\{X_j\}$ are the left invariant vector fields corresponding to an orthonormal basis of $V$; for $\mathbb G$ being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator $L_{p,k}$ and as an application, we get a Hardy type inequality associated with $X$.
Keywords:fundamental solutions, degenerate Laplacians, Hardy inequality, Htype groups Categories:35H30, 26D10, 22E25 

2. CJM 1999 (vol 51 pp. 673)
 Barlow, Martin T.; Bass, Richard F.

Brownian Motion and Harmonic Analysis on Sierpinski Carpets
We consider a class of fractal subsets of $\R^d$ formed in a manner
analogous to the construction of the Sierpinski carpet. We prove a
uniform Harnack inequality for positive harmonic functions; study
the heat equation, and obtain upper and lower bounds on the heat
kernel which are, up to constants, the best possible; construct a
locally isotropic diffusion $X$ and determine its basic properties;
and extend some classical Sobolev and Poincar\'e inequalities to
this setting.
Keywords:Sierpinski carpet, fractal, Hausdorff dimension, spectral dimension, Brownian motion, heat equation, harmonic functions, potentials, reflecting Brownian motion, coupling, Harnack inequality, transition densities, fundamental solutions Categories:60J60, 60B05, 60J35 
