CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword fundamental group

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2012 (vol 65 pp. 575)

Kallel, Sadok; Taamallah, Walid
The Geometry and Fundamental Group of Permutation Products and Fat Diagonals
Permutation products and their various ``fat diagonal'' subspaces are studied from the topological and geometric point of view. We describe in detail the stabilizer and orbit stratifications related to the permutation action, producing a sharp upper bound for its depth and then paying particular attention to the geometry of the diagonal stratum. We write down an expression for the fundamental group of any permutation product of a connected space $X$ having the homotopy type of a CW complex in terms of $\pi_1(X)$ and $H_1(X;\mathbb{Z})$. We then prove that the fundamental group of the configuration space of $n$-points on $X$, of which multiplicities do not exceed $n/2$, coincides with $H_1(X;\mathbb{Z})$. Further results consist in giving conditions for when fat diagonal subspaces of manifolds can be manifolds again. Various examples and homological calculations are included.

Keywords:symmetric products, fundamental group, orbit stratification
Categories:14F35, 57F80

2. CJM 2012 (vol 65 pp. 553)

Godinho, Leonor; Sousa-Dias, M. E.
Addendum and Erratum to "The Fundamental Group of $S^1$-manifolds"
This paper provides an addendum and erratum to L. Godinho and M. E. Sousa-Dias, "The Fundamental Group of $S^1$-manifolds". Canad. J. Math. 62(2010), no. 5, 1082--1098.

Keywords:symplectic reduction; fundamental group
Categories:53D19, 37J10, 55Q05

3. CJM 2011 (vol 64 pp. 573)

Nawata, Norio
Fundamental Group of Simple $C^*$-algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of a simple $\sigma$-unital $C^*$-algebra $A$ with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of ``Fundamental Group of Simple $C^*$-algebras with Unique Trace I and II'' by Nawata and Watatani. Our definition in this paper makes sense for stably projectionless $C^*$-algebras. We show that there exist separable stably projectionless $C^*$-algebras such that their fundamental groups are equal to $\mathbb{R}_+^\times$ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.

Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function
Categories:46L05, 46L08, 46L35

© Canadian Mathematical Society, 2014 : https://cms.math.ca/