Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword free group

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2016 (vol 68 pp. 481)

Bacher, Roland; Reutenauer, Christophe
Number of Right Ideals and a $q$-analogue of Indecomposable Permutations
We prove that the number of right ideals of codimension $n$ in the algebra of noncommutative Laurent polynomials in two variables over the finite field $\mathbb F_q$ is equal to $(q-1)^{n+1} q^{\frac{(n+1)(n-2)}{2}}\sum_\theta q^{inv(\theta)}$, where the sum is over all indecomposable permutations in $S_{n+1}$ and where $inv(\theta)$ stands for the number of inversions of $\theta$.

Keywords:permutation, indecomposable permutation, subgroups of free groups
Categories:05A15, 05A19

2. CJM 2009 (vol 61 pp. 124)

Dijkstra, Jan J.; Mill, Jan van
Characterizing Complete Erd\H os Space
The space now known as {\em complete Erd\H os space\/} $\cerdos$ was introduced by Paul Erd\H os in 1940 as the closed subspace of the Hilbert space $\ell^2$ consisting of all vectors such that every coordinate is in the convergent sequence $\{0\}\cup\{1/n:n\in\N\}$. In a solution to a problem posed by Lex G. Oversteegen we present simple and useful topological characterizations of $\cerdos$. As an application we determine the class of factors of $\cerdos$. In another application we determine precisely which of the spaces that can be constructed in the Banach spaces $\ell^p$ according to the `Erd\H os method' are homeomorphic to $\cerdos$. A novel application states that if $I$ is a Polishable $F_\sigma$-ideal on $\omega$, then $I$ with the Polish topology is homeomorphic to either $\Z$, the Cantor set $2^\omega$, $\Z\times2^\omega$, or $\cerdos$. This last result answers a question that was asked by Stevo Todor{\v{c}}evi{\'c}.

Keywords:Complete Erd\H os space, Lelek fan, almost zero-dimensional, nowhere zero-dimensional, Polishable ideals, submeasures on $\omega$, $\R$-trees, line-free groups in Banach spaces
Categories:28C10, 46B20, 54F65

© Canadian Mathematical Society, 2016 :