Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 2013 (vol 66 pp. 1250)
Symplectic Degenerate Flag Varieties A simple finite dimensional module $V_\lambda$ of a simple complex
algebraic group $G$ is naturally endowed with a filtration induced by the PBW-filtration
of $U(\mathrm{Lie}\, G)$. The associated graded space $V_\lambda^a$ is a module
for the group $G^a$, which can be roughly described as a semi-direct product of a
Borel subgroup of $G$ and a large commutative unipotent group $\mathbb{G}_a^M$. In analogy
to the flag variety $\mathcal{F}_\lambda=G.[v_\lambda]\subset \mathbb{P}(V_\lambda)$,
we call the closure
$\overline{G^a.[v_\lambda]}\subset \mathbb{P}(V_\lambda^a)$
of the $G^a$-orbit through the highest weight line the degenerate flag variety $\mathcal{F}^a_\lambda$.
In general this is a
singular variety, but we conjecture that it has many nice properties similar to
that of Schubert varieties. In this paper we consider the case of $G$ being the symplectic group.
The symplectic case is important for the conjecture
because it is the first known case where even for fundamental weights $\omega$ the varieties
$\mathcal{F}^a_\omega$ differ from $\mathcal{F}_\omega$. We give an explicit
construction of the varieties $Sp\mathcal{F}^a_\lambda$ and construct desingularizations,
similar to the Bott-Samelson resolutions in the classical case. We prove that $Sp\mathcal{F}^a_\lambda$
are normal locally complete intersections with terminal and rational singularities.
We also show that these varieties are Frobenius split. Using the above mentioned results, we
prove an analogue of the Borel-Weil theorem and obtain a $q$-character formula
for the characters of irreducible $Sp_{2n}$-modules via the Atiyah-Bott-Lefschetz fixed
points formula.
Keywords:Lie algebras, flag varieties, symplectic groups, representations Categories:14M15, 22E46 |
2. CJM 2011 (vol 64 pp. 1090)
Classic and Mirabolic Robinson-Schensted-Knuth Correspondence for Partial Flags In this paper we first generalize to the case of
partial flags a result proved both by Spaltenstein and by Steinberg
that relates the relative position of two complete flags and the
irreducible components of the flag variety in which they lie, using
the Robinson-Schensted-Knuth correspondence. Then we use this result
to generalize the mirabolic Robinson-Schensted-Knuth correspondence
defined by Travkin, to the case of two partial flags and a line.
Keywords:partial flag varieties, RSK correspondence Categories:14M15, 05A05 |