CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword flag

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM 2013 (vol 66 pp. 1250)

Feigin, Evgeny; Finkelberg, Michael; Littelmann, Peter
Symplectic Degenerate Flag Varieties
A simple finite dimensional module $V_\lambda$ of a simple complex algebraic group $G$ is naturally endowed with a filtration induced by the PBW-filtration of $U(\mathrm{Lie}\, G)$. The associated graded space $V_\lambda^a$ is a module for the group $G^a$, which can be roughly described as a semi-direct product of a Borel subgroup of $G$ and a large commutative unipotent group $\mathbb{G}_a^M$. In analogy to the flag variety $\mathcal{F}_\lambda=G.[v_\lambda]\subset \mathbb{P}(V_\lambda)$, we call the closure $\overline{G^a.[v_\lambda]}\subset \mathbb{P}(V_\lambda^a)$ of the $G^a$-orbit through the highest weight line the degenerate flag variety $\mathcal{F}^a_\lambda$. In general this is a singular variety, but we conjecture that it has many nice properties similar to that of Schubert varieties. In this paper we consider the case of $G$ being the symplectic group. The symplectic case is important for the conjecture because it is the first known case where even for fundamental weights $\omega$ the varieties $\mathcal{F}^a_\omega$ differ from $\mathcal{F}_\omega$. We give an explicit construction of the varieties $Sp\mathcal{F}^a_\lambda$ and construct desingularizations, similar to the Bott-Samelson resolutions in the classical case. We prove that $Sp\mathcal{F}^a_\lambda$ are normal locally complete intersections with terminal and rational singularities. We also show that these varieties are Frobenius split. Using the above mentioned results, we prove an analogue of the Borel-Weil theorem and obtain a $q$-character formula for the characters of irreducible $Sp_{2n}$-modules via the Atiyah-Bott-Lefschetz fixed points formula.

Keywords:Lie algebras, flag varieties, symplectic groups, representations
Categories:14M15, 22E46

2. CJM 2012 (vol 65 pp. 66)

Deng, Shaoqiang; Hu, Zhiguang
On Flag Curvature of Homogeneous Randers Spaces
In this paper we give an explicit formula for the flag curvature of homogeneous Randers spaces of Douglas type and apply this formula to obtain some interesting results. We first deduce an explicit formula for the flag curvature of an arbitrary left invariant Randers metric on a two-step nilpotent Lie group. Then we obtain a classification of negatively curved homogeneous Randers spaces of Douglas type. This results, in particular, in many examples of homogeneous non-Riemannian Finsler spaces with negative flag curvature. Finally, we prove a rigidity result that a homogeneous Randers space of Berwald type whose flag curvature is everywhere nonzero must be Riemannian.

Keywords:homogeneous Randers manifolds, flag curvature, Douglas spaces, two-step nilpotent Lie groups
Categories:22E46, 53C30

3. CJM 2011 (vol 64 pp. 1090)

Rosso, Daniele
Classic and Mirabolic Robinson-Schensted-Knuth Correspondence for Partial Flags
In this paper we first generalize to the case of partial flags a result proved both by Spaltenstein and by Steinberg that relates the relative position of two complete flags and the irreducible components of the flag variety in which they lie, using the Robinson-Schensted-Knuth correspondence. Then we use this result to generalize the mirabolic Robinson-Schensted-Knuth correspondence defined by Travkin, to the case of two partial flags and a line.

Keywords:partial flag varieties, RSK correspondence
Categories:14M15, 05A05

4. CJM 2010 (vol 62 pp. 870)

Valdimarsson, Stefán Ingi
The Brascamp-Lieb Polyhedron
A set of necessary and sufficient conditions for the Brascamp--Lieb inequality to hold has recently been found by Bennett, Carbery, Christ, and Tao. We present an analysis of these conditions. This analysis allows us to give a concise description of the set where the inequality holds in the case where each of the linear maps involved has co-rank $1$. This complements the result of Barthe concerning the case where the linear maps all have rank $1$. Pushing our analysis further, we describe the case where the maps have either rank $1$ or rank $2$. A separate but related problem is to give a list of the finite number of conditions necessary and sufficient for the Brascamp--Lieb inequality to hold. We present an algorithm which generates such a list.

Keywords:Brascamp-Lieb inequality, Loomis-Whitney inequality, lattice, flag
Categories:44A35, 14M15, 26D20

5. CJM 2007 (vol 59 pp. 36)

Develin, Mike; Martin, Jeremy L.; Reiner, Victor
Classification of Ding's Schubert Varieties: Finer Rook Equivalence
K.~Ding studied a class of Schubert varieties $X_\lambda$ in type A partial flag manifolds, indexed by integer partitions $\lambda$ and in bijection with dominant permutations. He observed that the Schubert cell structure of $X_\lambda$ is indexed by maximal rook placements on the Ferrers board $B_\lambda$, and that the integral cohomology groups $H^*(X_\lambda;\:\Zz)$, $H^*(X_\mu;\:\Zz)$ are additively isomorphic exactly when the Ferrers boards $B_\lambda, B_\mu$ satisfy the combinatorial condition of \emph{rook-equivalence}. We classify the varieties $X_\lambda$ up to isomorphism, distinguishing them by their graded cohomology rings with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the cohomology ring.

Keywords:Schubert variety, rook placement, Ferrers board, flag manifold, cohomology ring, nilpotence
Categories:14M15, 05E05

6. CJM 2000 (vol 52 pp. 265)

Brion, Michel; Helminck, Aloysius G.
On Orbit Closures of Symmetric Subgroups in Flag Varieties
We study $K$-orbits in $G/P$ where $G$ is a complex connected reductive group, $P \subseteq G$ is a parabolic subgroup, and $K \subseteq G$ is the fixed point subgroup of an involutive automorphism $\theta$. Generalizing work of Springer, we parametrize the (finite) orbit set $K \setminus G \slash P$ and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of $\theta$-stable (resp. $\theta$-split) parabolic subgroups. We also describe the decomposition of any $(K,P)$-double coset in $G$ into $(K,B)$-double cosets, where $B \subseteq P$ is a Borel subgroup. Finally, for certain $K$-orbit closures $X \subseteq G/B$, and for any homogeneous line bundle $\mathcal{L}$ on $G/B$ having nonzero global sections, we show that the restriction map $\res_X \colon H^0 (G/B, \mathcal{L}) \to H^0 (X, \mathcal{L})$ is surjective and that $H^i (X, \mathcal{L}) = 0$ for $i \geq 1$. Moreover, we describe the $K$-module $H^0 (X, \mathcal{L})$. This gives information on the restriction to $K$ of the simple $G$-module $H^0 (G/B, \mathcal{L})$. Our construction is a geometric analogue of Vogan and Sepanski's approach to extremal $K$-types.

Keywords:flag variety, symmetric subgroup
Categories:14M15, 20G05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/