1. CJM 2004 (vol 56 pp. 716)
 Guardo, Elena; Van Tuyl, Adam

Fat Points in $\mathbb{P}^1 \times \mathbb{P}^1$ and Their Hilbert Functions
We study the Hilbert functions of fat points in $\popo$.
If $Z \subseteq \popo$ is an arbitrary fat point scheme, then
it can be shown that for every $i$ and $j$ the values of the Hilbert
function $_{Z}(l,j)$ and $H_{Z}(i,l)$ eventually become constant for
$l \gg 0$. We show how to determine these eventual values
by using only the multiplicities of the points, and the
relative positions of the points in $\popo$. This enables
us to compute all but a finite number values of $H_{Z}$
without using the coordinates of points.
We also characterize the ACM fat point schemes
sing our description of the eventual behaviour. In fact,
n the case that $Z \subseteq \popo$ is ACM, then
the entire Hilbert function and its minimal free resolution
depend solely on knowing the eventual values of the Hilbert function.
Keywords:Hilbert function, points, fat points, CohenMacaulay, multiprojective space Categories:13D40, 13D02, 13H10, 14A15 

2. CJM 2000 (vol 52 pp. 123)
 Harbourne, Brian

An Algorithm for Fat Points on $\mathbf{P}^2
Let $F$ be a divisor on the blowup $X$ of $\pr^2$ at $r$ general
points $p_1, \dots, p_r$ and let $L$ be the total transform of a
line on $\pr^2$. An approach is presented for reducing the
computation of the dimension of the cokernel of the natural map
$\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl(
\CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$
to the case that $F$ is ample. As an application, a formula for
the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$,
completely solving the problem of determining the modules in
minimal free resolutions of fat point subschemes\break
$m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for
an arbitrary algebraically closed ground field~$k$.
Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group Categories:13P10, 14C99, 13D02, 13H15 
