1. CJM Online first
 Chen, Xianghong; Seeger, Andreas

Convolution powers of Salem measures with applications
We study the regularity of convolution powers for measures supported
on
Salem sets, and prove related results on Fourier restriction
and Fourier multipliers. In particular we show
that for $\alpha$ of the form
${d}/{n}$, $n=2,3,\dots$ there exist $\alpha$Salem measures
for which the $L^2$ Fourier restriction theorem holds in the
range $p\le \frac{2d}{2d\alpha}$.
The results rely on ideas of KÃ¶rner.
We extend some of his constructions to obtain upper regular $\alpha$Salem
measures, with sharp regularity results for $n$fold convolutions
for all $n\in \mathbb{N}$.
Keywords:convolution powers, Fourier restriction, Salem sets, Salem measures, random sparse sets, Fourier multipliers of BochnerRiesz type Categories:42A85, 42B99, 42B15, 42A61 

2. CJM Online first
 Adamus, Janusz; Seyedinejad, Hadi

Finite determinacy and stability of flatness of analytic mappings
It is proved that flatness of an analytic mapping germ from a
complete intersection is determined by its sufficiently high
jet. As a consequence, one obtains finite determinacy of complete
intersections. It is also shown that flatness and openness are
stable under deformations.
Keywords:finite determinacy, stability, flatness, openness, complete intersection Categories:58K40, 58K25, 32S05, 58K20, 32S30, 32B99, 32C05, 13B40 

3. CJM Online first
 Grinberg, Darij

Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions
The dual immaculate functions are a basis of the ring $\operatorname*{QSym}$
of quasisymmetric functions, and form one of the most natural
analogues of the
Schur functions. The dual immaculate function corresponding to
a composition
is a weighted generating function for immaculate tableaux in
the same way as a
Schur function is for semistandard Young tableaux; an "
immaculate tableau" is defined similarly to be
a semistandard
Young tableau, but the shape is a composition rather than a partition,
and
only the first column is required to strictly increase (whereas
the other
columns can be arbitrary; but each row has to weakly increase).
Dual
immaculate functions have been introduced by Berg, Bergeron,
Saliola, Serrano
and Zabrocki in arXiv:1208.5191, and have since been found to
possess numerous
nontrivial properties.
In this note, we prove a conjecture of Mike Zabrocki which provides
an
alternative construction for the dual immaculate functions in
terms of certain
"vertex operators". The proof uses a dendriform structure on
the ring
$\operatorname*{QSym}$; we discuss the relation of this structure
to known
dendriform structures on the combinatorial Hopf algebras
$\operatorname*{FQSym}$ and $\operatorname*{WQSym}$.
Keywords:combinatorial Hopf algebras, quasisymmetric functions, dendriform algebras, immaculate functions, Young tableaux Category:05E05 

4. CJM Online first
 Doran, Charles F.; Harder, Andrew

Toric Degenerations and Laurent polynomials related to Givental's LandauGinzburg models
For an appropriate class of Fano complete intersections in toric
varieties, we prove that there is a concrete relationship between
degenerations to specific toric subvarieties and expressions
for Givental's LandauGinzburg models as Laurent polynomials.
As a result, we show that Fano varieties presented as complete
intersections in partial flag manifolds admit degenerations to
Gorenstein toric weak Fano varieties, and their Givental LandauGinzburg
models can be expressed as corresponding Laurent polynomials.
We also use this to show that all of the Laurent polynomials
obtained by Coates, Kasprzyk and Prince by the so called Przyjalkowski
method correspond to toric degenerations of the corresponding
Fano variety. We discuss applications to geometric transitions
of CalabiYau varieties.
Keywords:Fano varieties, LandauGinzburg models, CalabiYau varieties, toric varieties Categories:14M25, 14J32, 14J33, 14J45 

5. CJM Online first
 Kamgarpour, Masoud

On the notion of conductor in the local geometric Langlands correspondence
Under the local Langlands correspondence, the conductor of an
irreducible representation of $\operatorname{Gl}_n(F)$ is greater than the
Swan conductor of the corresponding Galois representation. In
this paper, we establish the geometric analogue of this statement
by showing that the conductor of a categorical representation
of the loop group is greater than the irregularity of the corresponding
meromorphic connection.
Keywords:local geometric Langlands, connections, cyclic vectors, opers, conductors, SegalSugawara operators, ChervovMolev operators, critical level, smooth representations, affine KacMoody algebra, categorical representations Categories:17B67, 17B69, 22E50, 20G25 

6. CJM Online first
 Sugiyama, Shingo; Tsuzuki, Masao

Existence of Hilbert cusp forms with nonvanishing $L$values
We develop a derivative version of the relative trace formula
on $\operatorname{PGL}(2)$ studied in our previous work,
and derive an asymptotic formula of an average of central values
(derivatives)
of automorphic $L$functions for Hilbert cusp forms.
As an application, we prove the existence of Hilbert cusp forms
with nonvanishing central values (derivatives)
such that the absolute degrees of their Hecke fields are arbitrarily
large.
Keywords:automorphic representations, relative trace formulas, central $L$values, derivatives of $L$functions Categories:11F67, 11F72 

7. CJM Online first
 Kaftal, Victor; Ng, Ping Wong; Zhang, Shuang

Strict comparison of positive elements in multiplier algebras
Main result: If a C*algebra $\mathcal{A}$ is simple, $\sigma$unital,
has finitely many extremal traces, and has strict comparison
of positive elements by traces, then its multiplier algebra
$\operatorname{\mathcal{M}}(\mathcal{A})$
also has strict comparison of positive elements by traces. The
same results holds if ``finitely many extremal traces" is replaced
by ``quasicontinuous scale".
A key ingredient in the proof is that every positive element
in the multiplier algebra of an arbitrary $\sigma$unital C*algebra
can be approximated by a bidiagonal series.
An application of strict comparison: If $\mathcal{A}$ is a simple separable
stable C*algebra with real rank zero, stable rank one, and
strict comparison of positive elements by traces, then whether
a positive element is a positive linear combination of projections
is determined by the trace values of its range projection.
Keywords:strict comparison, bidiagonal form, positive combinations Categories:46L05, 46L35, 46L45, 47C15 

8. CJM Online first
 Andrade, Jaime; Dávila, Nestor; PérezChavela, Ernesto; Vidal, Claudio

Dynamics and regularization of the Kepler problem on surfaces of constant curvature
We classify and analyze the orbits of the Kepler problem on surfaces
of constant curvature (both positive and negative, $\mathbb S^2$ and
$\mathbb H^2$, respectively) as function of the angular momentum and
the energy. Hill's region are characterized and the problem of
timecollision is studied. We also regularize the problem in
Cartesian and intrinsic coordinates, depending on the constant
angular momentum and we describe the orbits of the regularized
vector field. The phase portrait both for $\mathbb S^2$ and $\mathbb H^2$
are pointed out.
Keywords:Kepler problem on surfaces of constant curvature, Hill's region, singularities, regularization, qualitative analysis of ODE Categories:70F16, 70G60 

9. CJM 2016 (vol 68 pp. 571)
 Gras, Georges

Les $\theta$rÃ©gulateurs locaux d'un nombre algÃ©brique : Conjectures $p$adiques
Let $K/\mathbb{Q}$ be Galois and let $\eta\in K^\times$ be such that
$\operatorname{Reg}_\infty (\eta) \ne 0$.
We define the local $\theta$regulators $\Delta_p^\theta(\eta)
\in \mathbb{F}_p$
for the $\mathbb{Q}_p\,$irreducible characters $\theta$ of
$G=\operatorname{Gal}(K/\mathbb{Q})$. A linear representation ${\mathcal L}^\theta\simeq \delta \,
V_\theta$ is associated with
$\Delta_p^\theta (\eta)$ whose nullity is equivalent to $\delta
\geq 1$.
Each $\Delta_p^\theta (\eta)$ yields $\operatorname{Reg}_p^\theta (\eta)$
modulo $p$ in the factorization
$\prod_{\theta}(\operatorname{Reg}_p^\theta (\eta))^{\varphi(1)}$ of
$\operatorname{Reg}_p^G (\eta) := \frac{ \operatorname{Reg}_p(\eta)}{p^{[K : \mathbb{Q}\,]}
}$ (normalized $p$adic regulator).
From $\operatorname{Prob}\big (\Delta_p^\theta(\eta) = 0 \ \& \ {\mathcal
L}^\theta \simeq \delta \, V_\theta\big )
\leq p^{ f \delta^2}$ ($f \geq 1$ is a residue degree) and the
BorelCantelli heuristic,
we conjecture that, for $p$ large enough, $\operatorname{Reg}_p^G (\eta)$
is a $p$adic unit or that
$p^{\varphi(1)} \parallel \operatorname{Reg}_p^G (\eta)$ (a single $\theta$
with $f=\delta=1$); this obstruction may be lifted assuming the
existence of a binomial probability law
confirmed through numerical studies
(groups $C_3$, $C_5$, $D_6$).
This conjecture would imply that, for all $p$ large enough,
Fermat quotients, normalized $p$adic
regulators are $p$adic units and that
number fields are $p$rational.
We recall some deep cohomological results that
may strengthen such conjectures.
Keywords:$p$adic regulators, LeopoldtJaulent conjecture, Frobenius group determinants, characters, Fermat quotient, Abelian $p$ramification, probabilistic number theory Categories:11F85, 11R04, 20C15, 11C20, 11R37, 11R27, 11Y40 

10. CJM Online first
 Runde, Volker; Viselter, Ami

On positive definiteness over locally compact quantum groups
The notion of positivedefinite functions over locally compact
quantum
groups was recently introduced and studied by Daws and Salmi.
Based
on this work, we generalize various wellknown results about
positivedefinite
functions over groups to the quantum framework. Among these are
theorems
on "square roots" of positivedefinite functions, comparison
of
various topologies, positivedefinite measures and characterizations
of amenability, and the separation property with respect to compact
quantum subgroups.
Keywords:bicrossed product, locally compact quantum group, noncommutative $L^p$space, positivedefinite function, positivedefinite measure, separation property Categories:20G42, 22D25, 43A35, 46L51, 46L52, 46L89 

11. CJM Online first
 Ovchinnikov, Alexey; Wibmer, Michael

Tannakian categories with semigroup actions
Ostrowski's theorem implies that $\log(x),\log(x+1),\dots$ are
algebraically independent over $\mathbb{C}(x)$. More generally, for
a linear differential or difference equation, it is an important
problem to find all algebraic dependencies among a nonzero solution
$y$ and particular transformations of $y$, such as derivatives
of $y$ with respect to parameters, shifts of the arguments, rescaling,
etc. In the present paper, we develop a theory of Tannakian categories
with semigroup actions, which will be used to attack such questions
in full generality, as each linear differential equation gives
rise to a Tannakian category.
Deligne studied actions of braid groups on categories and obtained
a finite collection of axioms that characterizes such actions
to apply it to various geometric constructions. In this paper,
we find a finite set of axioms that characterizes actions of
semigroups that are finite free products of semigroups of the
form $\mathbb{N}^n\times
\mathbb{Z}/{n_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/{n_r}\mathbb{Z}$
on Tannakian categories. This is the class of semigroups that
appear in many applications.
Keywords:semigroup actions on categories, Tannakian categories, difference algebraic groups, differential and difference equations with parameters Categories:18D10, 12H10, 20G05, 33C05, 33C80, 34K06 

12. CJM Online first
13. CJM Online first
 Garbagnati, Alice

On K3 surface quotients of K3 or Abelian surfaces
The aim of this paper is to prove that a K3 surface is the minimal
model of the quotient of an Abelian surface by a group $G$ (respectively
of a K3 surface by an Abelian group $G$) if and only if a certain
lattice is primitively embedded in its NÃ©ronSeveri group.
This allows one to describe the coarse moduli space of the K3
surfaces which are (rationally) $G$covered by Abelian or K3
surfaces (in the latter case $G$ is an Abelian group).
If either $G$ has order 2 or $G$ is cyclic and acts on an Abelian
surface, this result was already known, so we extend it to the
other cases.
Moreover, we prove that a K3 surface $X_G$ is the minimal model
of the quotient of an Abelian surface by a group $G$ if and only
if a certain configuration of rational curves is present on $X_G$.
Again this result was known only in some special cases, in particular
if $G$ has order 2 or 3.
Keywords:K3 surfaces, Kummer surfaces, Kummer type lattice, quotient surfaces Categories:14J28, 14J50, 14J10 

14. CJM Online first
 Xiao, Jie; Ye, Deping

Anisotropic Sobolev Capacity with Fractional Order
In this paper, we introduce the anisotropic
Sobolev capacity with fractional order and develop some basic
properties for this new object. Applications to the theory of
anisotropic fractional Sobolev spaces are provided. In particular,
we give geometric characterizations for a nonnegative Radon
measure $\mu$ that naturally induces an embedding of the anisotropic
fractional Sobolev class $\dot{\Lambda}_{\alpha,K}^{1,1}$ into
the $\mu$basedLebesguespace $L^{n/\beta}_\mu$ with $0\lt \beta\le
n$. Also, we investigate the anisotropic fractional $\alpha$perimeter.
Such a geometric quantity can be used to approximate the anisotropic
Sobolev capacity with fractional order. Estimation on the constant
in the related Minkowski inequality, which is asymptotically
optimal as $\alpha\rightarrow 0^+$, will be provided.
Keywords:sharpness, isoperimetric inequality, Minkowski inequality, fractional Sobolev capacity, fractional perimeter Categories:52A38, 53A15, 53A30 

15. CJM 2016 (vol 68 pp. 698)
 Skalski, Adam; Sołtan, Piotr

Quantum Families of Invertible Maps and Related Problems
The notion of families of quantum invertible maps (C$^*$algebra
homomorphisms satisfying PodleÅ' condition) is employed to strengthen
and reinterpret several results concerning universal quantum
groups acting on finite quantum spaces. In particular Wang's
quantum automorphism groups are shown to be universal with respect
to quantum families of invertible maps. Further the construction
of the Hopf image of Banica and Bichon is phrased in the purely
analytic language and employed to define the quantum subgroup
generated by a family of quantum subgroups or more generally
a family of quantum invertible maps.
Keywords:quantum families of invertible maps, Hopf image, universal quantum group Categories:46L89, 46L65 

16. CJM Online first
 De Bernardi, Carlo Alberto; Veselý, Libor

Tilings of normed spaces
By a tiling of a topological linear space $X$ we mean a
covering of $X$ by at least two closed convex sets,
called tiles, whose nonempty interiors are
pairwise disjoint.
Study of tilings of infinitedimensional spaces initiated in
the
1980's with pioneer papers by V. Klee.
We prove some general properties of tilings of locally convex
spaces,
and then apply these results to study existence of tilings of
normed and Banach spaces by tiles possessing
certain smoothness or rotundity properties. For a Banach space
$X$,
our main results are the following.
1. $X$ admits no tiling by FrÃ©chet smooth bounded tiles.
2. If $X$ is locally uniformly rotund (LUR), it does not admit
any tiling by balls.
3. On the other hand, some $\ell_1(\Gamma)$ spaces, $\Gamma$
uncountable, do admit
a tiling by pairwise disjoint LUR bounded tiles.
Keywords:tiling of normed space, FrÃ©chet smooth body, locally uniformly rotund body, $\ell_1(\Gamma)$space Categories:46B20, 52A99, 46A45 

17. CJM 2016 (vol 68 pp. 504)
18. CJM Online first
 Zheng, Tao

The ChernRicci flow on OeljeklausToma manifolds
We study the ChernRicci flow, an evolution equation of Hermitian
metrics, on a family of OeljeklausToma (OT) manifolds which
are nonKÃ¤hler compact complex manifolds with negative Kodaira
dimension. We prove that, after an initial conformal change,
the flow converges, in the
GromovHausdorff sense, to a torus with a flat Riemannian metric
determined by the OTmanifolds themselves.
Keywords:ChernRicci flow, OeljeklausToma manifold, Calabitype estimate, GromovHausdorff convergence Categories:53C44, 53C55, 32W20, 32J18, 32M17 

19. CJM 2016 (vol 68 pp. 481)
 Bacher, Roland; Reutenauer, Christophe

Number of Right Ideals and a $q$analogue of Indecomposable Permutations
We prove that the number of right ideals of codimension $n$ in
the algebra of noncommutative Laurent polynomials in two variables over the finite field $\mathbb F_q$ is equal to
$(q1)^{n+1} q^{\frac{(n+1)(n2)}{2}}\sum_\theta q^{inv(\theta)}$,
where the
sum is over all indecomposable permutations in $S_{n+1}$ and
where $inv(\theta)$
stands for the number of inversions of $\theta$.
Keywords:permutation, indecomposable permutation, subgroups of free groups Categories:05A15, 05A19 

20. CJM 2016 (vol 68 pp. 625)
 Ingram, Patrick

Rigidity and Height Bounds for Certain Postcritically Finite Endomorphisms of $\mathbb P^N$
The morphism $f:\mathbb{P}^N\to\mathbb{P}^N$ is called postcritically finite
(PCF) if the forward image of the critical locus, under iteration
of $f$, has algebraic support. In the case $N=1$, a result of
Thurston implies that there are no algebraic families of PCF
morphisms, other than a wellunderstood exceptional class known
as the flexible LattÃ¨s maps. A related arithmetic result
states that the set of PCF morphisms corresponds to a set of
bounded height in the moduli space of univariate rational functions.
We prove corresponding results for a certain subclass of the
regular polynomial endomorphisms of $\mathbb{P}^N$, for any $N$.
Keywords:postcritically finite, arithmetic dynamics, heights Categories:37P15, 32H50, 37P30 

21. CJM 2016 (vol 68 pp. 521)
 Emamizadeh, Behrouz; Farjudian, Amin; ZivariRezapour, Mohsen

Optimization Related to Some Nonlocal Problems of Kirchhoff Type
In this paper we introduce two rearrangement optimization
problems, one being a maximization and the other a minimization
problem, related to a nonlocal boundary value problem of Kirchhoff
type. Using the theory of rearrangements as developed by
G. R. Burton we are able to show that both problems are solvable,
and derive the corresponding optimality conditions. These conditions
in turn provide information concerning the locations of the
optimal
solutions. The strict convexity of the energy functional plays
a
crucial role in both problems. The popular case in which the
rearrangement class (i.e., the admissible set) is generated
by a
characteristic function is also considered. We show that in
this
case, the maximization problem gives rise to a free boundary
problem
of obstacle type, which turns out to be unstable. On the other
hand,
the minimization problem leads to another free boundary problem
of
obstacle type, which is stable. Some numerical results are
included
to confirm the theory.
Keywords:Kirchhoff equation, rearrangements of functions, maximization, existence, optimality condition Categories:35J20, 35J25 

22. CJM 2016 (vol 68 pp. 445)
 Martins, Luciana de Fátima; Saji, Kentaro

Geometric Invariants of Cuspidal Edges
We give a normal form of the cuspidal edge
which uses only diffeomorphisms on the source
and isometries on the target.
Using this normal form, we study differential
geometric invariants of
cuspidal edges which determine them up to order three.
We also
clarify relations between these invariants.
Keywords:cuspidal edge, curvature, wave fronts Categories:57R45, 53A05, 53A55 

23. CJM 2016 (vol 68 pp. 361)
 Fité, Francesc; González, Josep; Lario, Joan Carles

Frobenius Distribution for Quotients of Fermat Curves of Prime Exponent
Let $\mathcal{C}$ denote the Fermat curve over $\mathbb{Q}$ of prime
exponent $\ell$. The Jacobian $\operatorname{Jac}(\mathcal{C})$
of~$\mathcal{C}$ splits over $\mathbb{Q}$ as the product of Jacobians
$\operatorname{Jac}(\mathcal{C}_k)$, $1\leq k\leq \ell2$, where
$\mathcal{C}_k$ are curves obtained as quotients of $\mathcal{C}$ by
certain subgroups of automorphisms of $\mathcal{C}$. It is well known
that $\operatorname{Jac}(\mathcal{C}_k)$ is the power of an absolutely
simple abelian variety $B_k$ with complex multiplication. We call
degenerate those pairs $(\ell,k)$ for which $B_k$ has degenerate CM
type. For a nondegenerate pair $(\ell,k)$, we compute the SatoTate
group of $\operatorname{Jac}(\mathcal{C}_k)$, prove the generalized
SatoTate Conjecture for it, and give an explicit method to compute
the moments and measures of the involved distributions. Regardless of
$(\ell,k)$ being degenerate or not, we also obtain Frobenius
equidistribution results for primes of certain residue degrees in the
$\ell$th cyclotomic field. Key to our results is a detailed study of
the rank of certain generalized Demjanenko matrices.
Keywords:SatoTate group, Fermat curve, Frobenius distribution Categories:11D41, 11M50, 11G10, 14G10 

24. CJM Online first
 Brandes, Julia; Parsell, Scott T.

Simultaneous additive equations: Repeated and differing degrees
We obtain bounds for the number of variables required to establish
Hasse principles, both for existence of solutions and for asymptotic
formulÃ¦, for systems of additive equations containing forms
of differing degree but also multiple forms of like degree.
Apart from the very general estimates of Schmidt and BrowningHeathBrown,
which give weak results when specialized to the diagonal situation,
this is the first result on such "hybrid" systems. We also obtain
specialised results for systems of quadratic and cubic forms,
where we are able to take advantage of some of the stronger methods
available in that setting. In particular, we achieve essentially
square root cancellation for systems consisting of one cubic
and $r$ quadratic equations.
Keywords:equations in many variables, counting solutions of Diophantine equations, applications of the HardyLittlewood method Categories:11D72, 11D45, 11P55 

25. CJM 2016 (vol 68 pp. 395)
 Garibaldi, Skip; Nakano, Daniel K.

Bilinear and Quadratic Forms on Rational Modules of Split Reductive Groups
The representation theory of semisimple algebraic groups over
the complex numbers (equivalently, semisimple complex Lie algebras
or Lie groups, or real compact Lie groups) and the question of
whether a
given complex representation is symplectic or orthogonal has
been solved since at least the 1950s. Similar results for Weyl
modules of split reductive groups over fields of characteristic
different from 2 hold by
using similar proofs. This paper considers analogues of these
results for simple, induced and tilting modules of split reductive
groups over fields of prime characteristic as well as a complete
answer for Weyl modules over fields of characteristic 2.
Keywords:orthogonal representations, symmetric tensors, alternating forms, characteristic 2, split reductive groups Categories:20G05, 11E39, 11E88, 15A63, 20G15 
