Expand all Collapse all | Results 1 - 25 of 384 |
1. CJM Online first
Lower Escape Rate of Symmetric Jump-diffusion Processes We establish an integral test on the lower escape rate
of symmetric jump-diffusion processes generated by regular Dirichlet
forms.
Using this test, we can find the speed of particles escaping
to infinity.
We apply this test to symmetric jump processes of variable order. We also derive the upper and lower escape rates of time changed
processes
by using those of underlying processes.
Keywords:lower escape rate, Dirichlet form, Markov process, time change Categories:60G17, 31C25, 60J25 |
2. CJM Online first
The C*-algebras of Compact Transformation Groups We investigate the representation theory of the
crossed-product $C^*$-algebra associated to a compact group $G$
acting on a locally compact space $X$ when the stability subgroups
vary discontinuously.
Our main result applies when $G$ has a principal stability subgroup or
$X$ is locally of finite $G$-orbit type. Then the upper multiplicity
of the representation of the crossed product induced from an
irreducible representation $V$ of a stability subgroup is obtained by
restricting $V$ to a certain closed subgroup of the stability subgroup
and taking the maximum of the multiplicities of the irreducible
summands occurring in the restriction of $V$. As a corollary we obtain
that when the trivial subgroup is a principal stability subgroup, the
crossed product is a Fell algebra if and only if every stability
subgroup is abelian. A second corollary is that the $C^*$-algebra of
the motion group $\mathbb{R}^n\rtimes \operatorname{SO}(n)$ is a Fell algebra. This uses
the classical branching theorem for the special orthogonal group
$\operatorname{SO}(n)$ with respect to $\operatorname{SO}(n-1)$. Since proper transformation
groups are locally induced from the actions of compact groups, we
describe how some of our results can be extended to transformation
groups that are locally proper.
Keywords:compact transformation group, proper action, spectrum of a C*-algebra, multiplicity of a representation, crossed-product C*-algebra, continuous-trace C*-algebra, Fell algebra Categories:46L05, 46L55 |
3. CJM Online first
Geometric invariants of cuspidal edges We give a normal form of the cuspidal edge
which uses only diffeomorphisms on the source
and isometries on the target.
Using this normal form, we study differential
geometric invariants of
cuspidal edges which determine them up to order three.
We also
clarify relations between these invariants.
Keywords:cuspidal edge, curvature, wave fronts Categories:57R45, 53A05, 53A55 |
4. CJM Online first
Geography of Irregular Gorenstein 3-folds In this paper, we study the explicit geography problem of irregular Gorenstein minimal 3-folds of general type. We generalize the classical Noether-Castelnuovo type inequalities for irregular surfaces to irregular 3-folds according to the Albanese dimension.
Keywords:3-fold, geography, irregular variety Category:14J30 |
5. CJM Online first
Chern classes of splayed intersections We generalize the Chern class relation for the transversal intersection
of two nonsingular
varieties to a relation for possibly singular varieties, under
a splayedness assumption.
We show that the relation for the Chern-Schwartz-MacPherson classes
holds for two splayed hypersurfaces in a nonsingular variety,
and under a `strong splayedness' assumption for more
general subschemes. Moreover, the relation is shown to hold for
the Chern-Fulton classes
of any two splayed subschemes.
The main tool is a formula for Segre classes of splayed
subschemes. We also discuss the Chern class relation under the
assumption that one of the
varieties is a general very ample divisor.
Keywords:splayed intersection, Chern-Schwartz-MacPherson class, Chern-Fulton class, splayed blowup, Segre class Categories:14C17, 14J17 |
6. CJM Online first
Pathological phenomena in Denjoy-Carleman classes Let $\mathcal{C}^M$ denote a Denjoy-Carleman class of $\mathcal{C}^\infty$
functions (for a given logarithmically-convex sequence $M = (M_n)$).
We construct: (1) a function in $\mathcal{C}^M((-1,1))$ which
is nowhere in any smaller class; (2) a function on $\mathbb{R}$ which
is formally $\mathcal{C}^M$ at every point, but not in
$\mathcal{C}^M(\mathbb{R})$;
(3) (under the assumption of quasianalyticity) a smooth function
on $\mathbb{R}^p$ ($p \geq 2$) which is $\mathcal{C}^M$ on every $\mathcal{C}^M$
curve, but not in $\mathcal{C}^M(\mathbb{R}^p)$.
Keywords:Denjoy-Carleman classes, quasianalytic functions, quasianalytic curve, arc-quasianalytic Category:26E10 |
7. CJM Online first
Spectral flow for nonunital spectral triples We prove two results about nonunital index theory left open in a
previous paper. The
first is that the spectral triple arising from an action of the reals on a $C^*$-algebra with invariant trace
satisfies the hypotheses of the nonunital local index formula. The second result concerns the meaning of spectral flow in the nonunital case. For the special case of paths
arising from the odd
index pairing for smooth spectral triples in the nonunital setting we are able to connect with earlier approaches to the analytic definition of spectral flow.
Keywords:spectral triple, spectral flow, local index theorem Category:46H30 |
8. CJM Online first
Sommes friables d'exponentielles et applications An integer is said to be $y$-friable if its greatest prime factor is less than $y$.
In this paper, we obtain estimates for exponential sums
over $y$-friable numbers up to $x$ which are non-trivial
when $y \geq \exp\{c \sqrt{\log x} \log \log x\}$. As a consequence,
we obtain an asymptotic formula for the
number of $y$-friable solutions to the equation $a+b=c$ which is valid
unconditionnally under the same assumption.
We use a contour integration argument based on the saddle point
method, as developped in the context of friable numbers by Hildebrand
and Tenenbaum,
and used by Lagarias, Soundararajan and Harper to study exponential and character sums over friable numbers.
Keywords:thÃ©orie analytique des nombres, entiers friables, mÃ©thode du col Categories:12N25, 11L07 |
9. CJM Online first
Function-theoretic Properties for the Gauss Maps of Various Classes of Surfaces We elucidate the geometric background of function-theoretic properties
for the Gauss maps of
several classes of immersed surfaces in three-dimensional space
forms, for example, minimal surfaces in Euclidean three-space, improper affine spheres in the affine three-space, and constant
mean curvature one surfaces and flat surfaces in hyperbolic three-space. To achieve this purpose, we prove an optimal curvature bound
for a specified conformal metric on an open Riemann surface and give some applications. We also provide unicity theorems for
the Gauss maps of these classes of surfaces.
Keywords:Gauss map, minimal surface, constant mean curvature surface, front, ramification, omitted value, the Ahlfors island theorem, unicity theorem. Categories:53C42, 30D35, 30F45, 53A10, 53A15 |
10. CJM Online first
Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators |
Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators Let $w$ be either in the Muckenhoupt class of $A_2(\mathbb{R}^n)$ weights
or in the class of $QC(\mathbb{R}^n)$ weights, and
$L_w:=-w^{-1}\mathop{\mathrm{div}}(A\nabla)$
the degenerate elliptic operator on the Euclidean space $\mathbb{R}^n$,
$n\ge 2$. In this article, the authors establish the non-tangential
maximal function characterization
of the Hardy space $H_{L_w}^p(\mathbb{R}^n)$ associated with $L_w$ for
$p\in (0,1]$ and, when $p\in (\frac{n}{n+1},1]$ and
$w\in A_{q_0}(\mathbb{R}^n)$ with $q_0\in[1,\frac{p(n+1)}n)$,
the authors prove that the associated Riesz transform $\nabla L_w^{-1/2}$
is bounded from $H_{L_w}^p(\mathbb{R}^n)$ to the weighted classical
Hardy space $H_w^p(\mathbb{R}^n)$.
Keywords:degenerate elliptic operator, Hardy space, square function, maximal function, molecule, Riesz transform Categories:42B30, 42B35, 35J70 |
11. CJM Online first
The Distribution of the First Elementary Divisor of the Reductions of a Generic Drinfeld Module of Arbitrary Rank |
The Distribution of the First Elementary Divisor of the Reductions of a Generic Drinfeld Module of Arbitrary Rank Let $\psi$ be a generic Drinfeld module of rank $r \geq 2$. We study
the first elementary divisor
$d_{1, \wp}(\psi)$ of the reduction of $\psi$ modulo a prime $\wp$, as $\wp$ varies.
In particular, we prove the existence of the density of the primes $\wp$ for which $d_{1, \wp} (\psi)$ is fixed. For $r = 2$, we also study the second elementary divisor (the exponent) of the reduction of $\psi$ modulo $\wp$
and prove that, on average, it has a large norm. Our work is motivated by the study of J.-P. Serre of an elliptic curve analogue of Artin's Primitive Root Conjecture, and, moreover, by refinements to Serre's study developed by the first author and M.R. Murty.
Keywords:Drinfeld modules, density theorems Categories:11R45, 11G09, 11R58 |
12. CJM Online first
Integral Points on Elliptic Curves and Explicit Valuations of Division Polynomials Assuming Lang's conjectured lower bound on the heights of non-torsion
points on an elliptic curve, we show that there exists an absolute
constant $C$ such that for any elliptic curve $E/\mathbb{Q}$ and non-torsion
point $P \in E(\mathbb{Q})$, there is at most one integral multiple
$[n]P$ such that $n \gt C$. The proof is a modification of a proof
of Ingram giving an unconditional but not uniform bound. The
new ingredient is a collection of explicit formulae for the
sequence $v(\Psi_n)$ of valuations of the division polynomials.
For $P$ of non-singular reduction, such sequences are already
well described in most cases, but for $P$ of singular reduction,
we are led to define a new class of sequences called \emph{elliptic
troublemaker sequences}, which measure the failure of the NÃ©ron
local height to be quadratic. As a corollary in the spirit of
a conjecture of Lang and Hall, we obtain a uniform upper bound
on $\widehat{h}(P)/h(E)$ for integer points having two large
integral multiples.
Keywords:elliptic divisibility sequence, Lang's conjecture, height functions Categories:11G05, 11G07, 11D25, 11B37, 11B39, 11Y55, 11G50, 11H52 |
13. CJM Online first
Lyapunov Stability and Attraction Under Equivariant Maps Let $M$ and $N$ be admissible Hausdorff topological spaces endowed
with
admissible families of open coverings. Assume that $\mathcal{S}$ is a
semigroup acting on both $M$ and $N$. In this paper we study the behavior of
limit sets, prolongations, prolongational limit sets, attracting sets,
attractors and Lyapunov stable sets (all concepts defined for the action of
the semigroup $\mathcal{S}$) under equivariant maps and semiconjugations
from $M$ to $N$.
Keywords:Lyapunov stability, semigroup actions, generalized flows, equivariant maps, admissible topological spaces Categories:37B25, 37C75, 34C27, 34D05 |
14. CJM Online first
The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain Banach algebra products Associated with two commutative Banach algebras $A$ and $B$ and
a character $\theta$ of $B$ is a certain Banach algebra product
$A\times_\theta B$, which is a splitting extension of $B$ by
$A$. We investigate two topics for the algebra $A\times_\theta
B$ in relation to the corresponding ones of $A$ and $B$. The
first one is the Bochner-Schoenberg-Eberlein property and the
algebra of Bochner-Schoenberg-Eberlein functions on the spectrum,
whereas the second one concerns the wide range of spectral synthesis
problems for $A\times_\theta B$.
Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSE-algebra, BSE-function Categories:46J10, 46J25, 43A30, 43A45 |
15. CJM Online first
The Weak b-principle: Mumford Conjecture In this note we introduce and study a new class of maps called
oriented colored broken submersions. This is the simplest class
of maps that satisfies a version of the b-principle and in dimension
$2$ approximates the class of oriented submersions well in the
sense that
every oriented colored broken submersion of dimension $2$ to
a closed simply connected manifold is bordant to a submersion.
We show that the Madsen-Weiss theorem (the standard Mumford Conjecture)
fits a general setting of the b-principle. Namely, a version
of the b-principle for
oriented colored broken submersions together with the Harer
stability theorem and Miller-Morita theorem implies the Madsen-Weiss
theorem.
Keywords:generalized cohomology theories, fold singularities, h-principle, infinite loop spaces Categories:55N20, 53C23 |
16. CJM Online first
Stability of Equilibrium Solutions in Planar Hamiltonian Difference Systems In this paper, we study the stability in the Lyapunov sense of the
equilibrium solutions of discrete or difference Hamiltonian systems
in the plane. First, we perform a detailed study of linear
Hamiltonian systems as a function of the parameters, in particular
we analyze the regular and the degenerate cases. Next, we give a
detailed study of the normal form associated with the linear
Hamiltonian system. At the same time we obtain the conditions under
which we can get stability (in linear approximation) of the
equilibrium solution, classifying all the possible phase diagrams as
a function of the parameters. After that, we study the stability of
the equilibrium solutions of the first order difference system in
the plane associated to mechanical Hamiltonian system and
Hamiltonian system defined by cubic polynomials. Finally, important
differences with the continuous case are pointed out.
Keywords:difference equations, Hamiltonian systems, stability in the Lyapunov sense Categories:34D20, 34E10 |
17. CJM Online first
On two-faced families of non-commutative random variables We demonstrate that the notions of bi-free independence and combinatorial-bi-free
independence of two-faced families are equivalent using a diagrammatic
view of bi-non-crossing partitions.
These diagrams produce an operator model on a Fock space suitable
for representing any two-faced family of non-commutative random
variables.
Furthermore, using a Kreweras complement on bi-non-crossing partitions
we establish the expected formulas for the multiplicative convolution
of a bi-free pair of two-faced families.
Keywords:free probability, operator algebras, bi-free Category:46L54 |
18. CJM Online first
The Category of Bratteli Diagrams A category structure for Bratteli diagrams is proposed and a
functor from
the category of AF algebras to the category of Bratteli diagrams
is
constructed. Since isomorphism of Bratteli diagrams in this
category coincides
with Bratteli's notion of equivalence, we obtain in particular
a functorial formulation of Bratteli's
classification of AF algebras (and at the same time, of Glimm's
classification of UHF~algebras).
It is shown that the three approaches
to classification of AF~algebras, namely, through Bratteli diagrams,
K-theory, and
abstract classifying categories, are essentially the same
from a categorical point of view.
Keywords:C$^{*}$-algebra, category, functor, AF algebra, dimension group, Bratteli diagram Categories:46L05, 46L35, 46M15 |
19. CJM Online first
Abelian Surfaces with an Automorphism and Quaternionic Multiplication We construct one dimensional families of Abelian surfaces with
quaternionic multiplication
which also have an automorphism of order three or four. Using Barth's
description of the moduli space of $(2,4)$-polarized Abelian surfaces,
we find the Shimura curve parametrizing these Abelian surfaces in a
specific case.
We explicitly relate these surfaces to the Jacobians of genus two
curves studied by Hashimoto and Murabayashi.
We also describe a (Humbert) surface in Barth's moduli space which
parametrizes Abelian surfaces with real multiplication by
$\mathbf{Z}[\sqrt{2}]$.
Keywords:abelian surfaces, moduli, shimura curves Categories:14K10, 11G10, 14K20 |
20. CJM Online first
Metaplectic Tensor Products for Automorphic Representation of $\widetilde{GL}(r)$ Let $M=\operatorname{GL}_{r_1}\times\cdots\times\operatorname{GL}_{r_k}\subseteq\operatorname{GL}_r$ be a Levi
subgroup of $\operatorname{GL}_r$, where $r=r_1+\cdots+r_k$, and $\widetilde{M}$ its metaplectic preimage
in the $n$-fold metaplectic cover $\widetilde{\operatorname{GL}}_r$ of $\operatorname{GL}_r$. For automorphic
representations $\pi_1,\dots,\pi_k$ of $\widetilde{\operatorname{GL}}_{r_1}(\mathbb{A}),\dots,\widetilde{\operatorname{GL}}_{r_k}(\mathbb{A})$,
we construct (under a certain
technical assumption, which is always satisfied when $n=2$) an
automorphic representation $\pi$
of $\widetilde{M}(\mathbb{A})$ which can be considered as the ``tensor product'' of the
representations $\pi_1,\dots,\pi_k$. This is
the global analogue of the metaplectic tensor product
defined by P. Mezo in the sense that locally at each place $v$,
$\pi_v$ is equivalent to the local metaplectic tensor product of
$\pi_{1,v},\dots,\pi_{k,v}$ defined by Mezo. Then we show that if all
of $\pi_i$ are cuspidal (resp. square-integrable modulo center), then
the metaplectic tensor product is cuspidal (resp. square-integrable
modulo center). We also show that (both
locally and globally) the metaplectic tensor product behaves in the
expected way under the action of a Weyl group element, and show the
compatibility with parabolic inductions.
Keywords:automorphic forms, representations of covering groups Category:11F70 |
21. CJM Online first
Cremona Maps of de JonquiÃ¨res Type This paper is concerned with suitable generalizations of a plane de
JonquiÃ¨res map to higher dimensional space
$\mathbb{P}^n$ with $n\geq 3$.
For each given point of $\mathbb{P}^n$ there is a subgroup of the entire
Cremona group of dimension $n$
consisting of such maps.
One studies both geometric and group-theoretical properties of this notion.
In the case where $n=3$ one describes an explicit set of generators of
the group and gives a homological characterization
of a basic subgroup thereof.
Keywords:Cremona map, de JonquiÃ¨res map, Cremona group, minimal free resolution Categories:14E05, 13D02, 13H10, 14E07, 14M05, 14M25 |
22. CJM 2014 (vol 67 pp. 241)
Global Holomorphic Functions in Several Noncommuting Variables We define a free holomorphic function to be a function
that is locally, with respect to the free topology, a bounded
nc-function.
We prove that free holomorphic functions are the functions that
are locally uniformly approximable
by free polynomials. We prove a realization formula and an Oka-Weil
theorem for free analytic functions.
Keywords:noncommutative analysis, free holomorphic functions Category:15A54 |
23. CJM 2014 (vol 67 pp. 152)
On Homotopy Invariants of Combings of Three-manifolds Combings of compact, oriented $3$-dimensional manifolds $M$ are
homotopy classes of nowhere vanishing vector fields.
The Euler class of the normal bundle is an invariant of the combing,
and it only depends on the underlying Spin$^c$-structure. A combing
is called torsion
if this Euler class is a torsion element of $H^2(M;\mathbb Z)$. Gompf
introduced a $\mathbb Q$-valued invariant $\theta_G$ of torsion combings
on closed $3$-manifolds, and he showed that $\theta_G$ distinguishes
all torsion combings with the same Spin$^c$-structure.
We give an alternative definition for $\theta_G$ and we express
its variation as a linking number. We define a similar invariant
$p_1$ of combings for manifolds bounded by $S^2$. We relate $p_1$
to the $\Theta$-invariant, which is the simplest configuration
space integral invariant of rational homology $3$-balls, by the
formula $\Theta=\frac14p_1 + 6 \lambda(\hat{M})$ where $\lambda$
is the Casson-Walker invariant.
The article also includes a self-contained presentation of combings
for $3$-manifolds.
Keywords:Spin$^c$-structure, nowhere zero vector fields, first Pontrjagin class, Euler class, Heegaard Floer homology grading, Gompf invariant, Theta invariant, Casson-Walker invariant, perturbative expansion of Chern-Simons theory, configuration space integrals Categories:57M27, 57R20, 57N10 |
24. CJM 2014 (vol 67 pp. 404)
Rotation Algebras and the Exel Trace Formula We found that if $u$ and $v$ are any two unitaries in
a unital $C^*$-algebra with $\|uv-vu\|\lt 2$ and $uvu^*v^*$ commutes with
$u$ and $v,$ then the $C^*$-subalgebra $A_{u,v}$ generated by $u$ and
$v$ is isomorphic to a quotient of some rotation algebra $A_\theta$
provided that $A_{u,v}$ has a unique tracial state.
We also found that the Exel trace formula holds in any unital
$C^*$-algebra.
Let $\theta\in (-1/2, 1/2)$ be a real number. We prove the
following:
For any $\epsilon\gt 0,$ there exists $\delta\gt 0$ satisfying the following:
if $u$ and $v$ are two unitaries in any unital simple $C^*$-algebra
$A$ with tracial rank zero such that
\[
\|uv-e^{2\pi i\theta}vu\|\lt \delta
\text{ and }
{1\over{2\pi i}}\tau(\log(uvu^*v^*))=\theta,
\]
for all tracial state $\tau$ of $A,$ then there exists a pair
of unitaries $\tilde{u}$ and $\tilde{v}$ in $A$
such that
\[
\tilde{u}\tilde{v}=e^{2\pi i\theta} \tilde{v}\tilde{u},\,\,
\|u-\tilde{u}\|\lt \epsilon
\text{ and }
\|v-\tilde{v}\|\lt \epsilon.
\]
Keywords:rotation algebras, Exel trace formula Category:46L05 |
25. CJM Online first
Representation stability of power sets and square free polynomials The symmetric group $\mathcal{S}_n$ acts on the power
set $\mathcal{P}(n)$ and also on the set of
square free polynomials in $n$ variables. These
two related representations are analyzed from the stability point
of view. An application is given for the action of the symmetric
group on the cohomology of the pure braid group.
Keywords:symmetric group modules, square free polynomials, representation stability, Arnold algebra Categories:20C30, 13A50, 20F36, 55R80 |